Japanese Journal of Ophthalmology

, Volume 62, Issue 2, pp 109–126 | Cite as

Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma

Forefront Review Section Organizer: Makoto Aihara, MD, PhD


Rho-associated protein kinase (ROCK), a ubiquitously expressed signaling messenger and downstream effector of Rho, is activated by several bioactive factors in the aqueous humor (AH). Rho-ROCK signaling regulates a wide spectrum of fundamental cellular events, including cell adhesion, motility, proliferation, differentiation, and apoptosis. Previous studies, including our own, found that ROCK inhibitor lowers intraocular pressure (IOP) via a direct effect on the conventional AH outflow pathway, by regulation of contractile properties, fibrotic activity, and permeability of the trabecular meshwork (TM) and Schlemm’s canal (SC) tissues, influencing extracellular matrix (ECM) production. Recently, a novel ROCK inhibitor, ripasudil, has been introduced in Japan. Other ROCK inhibitors are now in clinical trials as new IOP-lowering drugs for glaucoma patients. To date, ripasudil, administered together with other glaucoma medications, has proved safe and efficient in lowering IOP as well as additional effects such as prostaglandin analogs, beta-blockers, and carbonic anhydrase inhibitors, all of which help lower IOP by different mechanisms. In addition, we found that long-term treatment with ripasudil exerted an additional IOP-lowering effect, especially in eyes with high IOP, suggesting that late-onset remodeling of the ECM in glaucomatous eyes may elicit mild and delayed changes in IOP levels. ROCK inhibitors have also shown several additional effects, including increased retinal blood flow, direct protection of neurons against various types of stress, and regulation of wound healing; these benefits may potentially be useful in glaucoma treatment.


Glaucoma Conventional outflow Intraocular pressure Rho-associated protein kinase (ROCK) inhibitor Trabecular meshwork 



This work was supported by the Japan Society for the Promotion of Science (JSPS) Grant Number 15K10854 (MH).

Conflicts of interest

M. Honjo, Analysis Support (Kowa); H. Tanihara, Analysis Support (Kowa).


  1. 1.
    Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi study. Ophthalmology. 2004;111:1641–8.PubMedGoogle Scholar
  2. 2.
    Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Caprioli J, Coleman AL. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol. 2010;149:704–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Kwon YH, Fingert JH, Kuehn MH, Alward WL. Primary open-angle glaucoma. N Engl J Med. 2009;360:1113–24.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Quigley HA. Glaucoma. Lancet. 2011;377:1367–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Quigley HA. Open-angle glaucoma. N Engl J Med. 1993;328:1097–106.PubMedCrossRefGoogle Scholar
  9. 9.
    Sommer A. Intraocular pressure and glaucoma. Am J Ophthalmol. 1989;107:186–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Gabelt BAT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma. Prog Retin Eye Res. 2005;24:612–37.PubMedCrossRefGoogle Scholar
  11. 11.
    Stamer WD, Acott TS. Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol. 2012;23:135–43.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Mäepea O, Bill A. Pressures in the juxtacanalicular tissue and Schlemm’s canal in monkeys. Exp Eye Res. 1992;54:879–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Honjo M, Tanihara H, Inatani M, Kido N, Sawamura T, Yue BY, et al. Effects of Rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci. 2001;42:137–44.PubMedGoogle Scholar
  14. 14.
    Kaneko Y, Ohta M, Inoue T, Mizuno K, Isobe T, Tanabe S, et al. Effects of K-115 (Ripasudil), a novel ROCK inhibitor, on trabecular meshwork and Schlemm’s canal endothelial cells. Sci Rep. 2016;6:19640.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Fujimoto T, Inoue T, Kameda T, Kasaoka N, Inoue-Mochita M, Tsuboi N, et al. Involvement of RhoA/Rho-associated kinase signal transduction pathway in dexamethasone-induced alterations in aqueous outflow. Invest Ophthalmol Vis Sci. 2012;53:7097–108.PubMedCrossRefGoogle Scholar
  16. 16.
    Kameda T, Inoue T, Inatani M, Fujimoto T, Honjo M, Kasaoka N, et al. The effect of Rho-associated protein kinase inhibitor on monkey Schlemm’s canal endothelial cells. Invest Ophthalmol Vis Sci. 2012;53:3092–103.PubMedCrossRefGoogle Scholar
  17. 17.
    Honjo M, Tanihara H, Kameda T, Kawaji T, Yoshimura N, Araie M. Potential role of Rho-associated protein kinase inhibitor Y-27632 in glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2007;48:5549–57.PubMedCrossRefGoogle Scholar
  18. 18.
    Inoue T, Tanihara H. Rho-associated kinase inhibitors: a novel glaucoma therapy. Prog Retin Eye Res. 2013;37:1–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Clark AF, Wordinger RJ. The role of steroids in outflow resistance. Exp Eye Res. 2009;88:752–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86:543–61.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Stamer WD, Read AT, Sumida GM, Ethier CR. Sphingosine-1-phosphate effects on the inner wall of Schlemm’s canal and outflow facility in perfused human eyes. Exp Eye Res. 2009;89:980–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shepard AR, Millar JC, Pang IH, Jacobson N, Wang WH, Clark AF. Adenoviral gene transfer of active human transforming growth factor-{beta}2 elevates intraocular pressure and reduces outflow facility in rodent eyes. Invest Ophthalmol Vis Sci. 2010;51:2067–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Keller KE, Aga M, Bradley JM, Kelley MJ, Acott TS. Extracellular matrix turnover and outflow resistance. Exp Eye Res. 2009;88:676–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Gottanka J, Chan D, Eichhorn M, Lutjen-Drecoll E, Ethier CR. Effects of TGF-beta2 in perfused human eyes. Invest Ophthalmol Vis Sci. 2004;45:153–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Wiederholt M, Thieme H, Stumpff F. The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retin Eye Res. 2000;19:271–95.PubMedCrossRefGoogle Scholar
  26. 26.
    Iyer P, Lalane R 3rd, Morris C, Challa P, Vann R, Rao PV. Autotaxin-lysophosphatidic acid axis is a novel molecular target for lowering intraocular pressure. PLoS One. 2012;7:e42627.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wang RF, Williamson JE, Kopczynski C, Serle JB. Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015;24:51–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Burridge K, Wennerberg K. Rho and Rac take center stage. Cell. 2004;116:167–79.PubMedCrossRefGoogle Scholar
  29. 29.
    Garcia-Mata R, Burridge K. Catching a GEF by its tail. Trends Cell Biol. 2007;17:36–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93:269–309.PubMedCrossRefGoogle Scholar
  31. 31.
    Shimokawa H, Sunamura S, Satoh K. RhoA/rho-kinase in the cardiovascular system. Circ Res. 2016;118:352–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15:1885–93.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol. 2013;92:303–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83:1325–58.PubMedCrossRefGoogle Scholar
  35. 35.
    Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285:895–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Amano M, Kaneko T, Maeda A, Nakayama M, Ito M, Yamauchi T, et al. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. J Neurochem. 2003;87:780–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton. 2010;67:545–54.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fukata Y, Amano M, Kaibuchi K. Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 2001;22:32–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 1996;392:189–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases. 2014;5:e29846.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fukiage C, Mizutani K, Kawamoto Y, Azuma M, Shearer TR. Involvement of phosphorylation of myosin phosphatase by ROCK in trabecular meshwork and ciliary muscle contraction. Biochem Biophys Res Commun. 2001;288:296–300.PubMedCrossRefGoogle Scholar
  43. 43.
    Whitlock NA, Harrison B, Mixon T, Yu XQ, Wilson A, Gerhardt B, et al. Decreased intraocular pressure in mice following either pharmacological or genetic inhibition of ROCK. J Ocul Pharmacol Ther. 2009;25:187–94.PubMedCrossRefGoogle Scholar
  44. 44.
    Amin E, Dubey BN, Zhang SC, Gremer L, Dvorsky R, Moll JM, et al. Rho-kinase: regulation, (dys)function, and inhibition. Biol Chem. 2013;394:1399–410.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev. 2015;67:103–17.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Loirand G. Rho Kinases in Health and Disease: From Basic Science to Translational Research. Pharmacol Rev. 2015;67:1074–95.PubMedCrossRefGoogle Scholar
  47. 47.
    Lai AY, McLaurin J. Rho-associated protein kinases as therapeutic targets for both vascular and parenchymal pathologies in Alzheimer’s disease. J Neurochem. 2017. Scholar
  48. 48.
    Epstein DL, Rowlette LL, Roberts BC. Acto-myosin drug effects and aqueous outflow function. Invest Ophthalmol Vis Sci. 1999;40:74–81.PubMedGoogle Scholar
  49. 49.
    Erickson-Lamy K, Schroeder A, Epstein DL. Ethacrynic acid induces reversible shape and cytoskeletal changes in cultured cells. Invest Ophthalmol Vis Sci. 1992;33:2631–40.PubMedGoogle Scholar
  50. 50.
    Kaufman PL, Barany EH. Cytochalasin B reversibly increases outflow facility in the eye of the cynomolgus monkey. Invest Ophthalmol Vis Sci. 1977;16:47–53.PubMedGoogle Scholar
  51. 51.
    Peterson JA, Tian B, Bershadsky AD, Volberg T, Gangnon RE, Spector I, et al. Latrunculin-A increases outflow facility in the monkey. Invest Ophthalmol Vis Sci. 1999;40:931–41.PubMedGoogle Scholar
  52. 52.
    Tian B, Geiger B, Epstein DL, Kaufman PL. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci. 2000;41:619–23.PubMedGoogle Scholar
  53. 53.
    Tian B, Kaufman PL, Volberg T, Gabelt BT, Geiger B. H-7 disrupts the actin cytoskeleton and increases outflow facility. Arch Ophthalmol. 1998;116:633–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Waki M, Yoshida Y, Oka T, Azuma M. Reduction of intraocular pressure by topical administration of an inhibitor of the Rho-associated protein kinase. Curr Eye Res. 2001;22:470–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Rao PV, Deng PF, Kumar J, Epstein DL. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest Ophthalmol Vis Sci. 2001;42:1029–37.PubMedGoogle Scholar
  56. 56.
    Tokushige H, Waki M, Takayama Y, Tanihara H. Effects of Y-39983, a selective Rho-associated protein kinase inhibitor, on blood flow in optic nerve head in rabbits and axonal regeneration of retinal ganglion cells in rats. Curr Eye Res. 2011;36:964–70.PubMedCrossRefGoogle Scholar
  57. 57.
    Honjo M, Inatani M, Kido N, Sawamura T, Yue BYJT, Honda Y, et al. A myosin light chain kinase inhibitor, ML-9, lowers the intraocular pressure in rabbit eyes. Exp Eye Res. 2002;75:135–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Nishio M, Fukunaga T, Sugimoto M, Ikesugi K, Sumi K, Hidaka H, et al. The effect of the H-1152P, a potent Rho-associated coiled coil-formed protein kinase inhibitor, in rabbit normal and ocular hypertensive eyes. Curr Eye Res. 2009;34:282–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Feng Y, Yin Y, Weiser A, Griffin E, Cameron MD, Lin L, et al. Discovery of substituted 4-(pyrazol-4-yl)-phenylbenzodioxane-2-carboxamides as potent and highly selective Rho kinase (ROCK-II) inhibitors. J Med Chem. 2008;51:6642–5.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pakravan M, Beni AN, Ghahari E, Varshochian R, Yazdani S, Esfandiari H, et al. The ocular hypotensive efficacy of topical fasudil, a Rho-associated protein kinase inhibitor, in patients with end-stage glaucoma. Am J Ther. 2017;24:e676–80.PubMedCrossRefGoogle Scholar
  61. 61.
    de Kater AW, Shahsafaei A, Epstein DL. Localization of smooth muscle and nonmuscle actin isoforms in the human aqueous outflow pathway. Invest Ophthalmol Vis Sci. 1992;33:424–9.PubMedGoogle Scholar
  62. 62.
    Rao PV, Deng P, Sasaki Y, Epstein DL. Regulation of myosin light chain phosphorylation in the trabecular meshwork: role in aqueous humour outflow facility. Exp Eye Res. 2005;80:197–206.PubMedCrossRefGoogle Scholar
  63. 63.
    Epstein DL, Freddo TF, Bassett-Chu S, Chung M, Karageuzian L. Influence of ethacrynic acid on outflow facility in the monkey and calf eye. Invest Ophthalmol Vis Sci. 1987;28:2067–75.PubMedGoogle Scholar
  64. 64.
    Ethier CR, Read AT, Chan DW. Effects of latrunculin-B on outflow facility and trabecular meshwork structure in human eyes. Invest Ophthalmol Vis Sci. 2006;47:1991–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Inoue T, Pattabiraman PP, Epstein DL, Vasantha Rao P. Effects of chemical inhibition of N-WASP, a critical regulator of actin polymerization on aqueous humor outflow through the conventional pathway. Exp Eye Res. 2010;90:360–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Bill A, Svedbergh B. Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm—an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthalmol. 1972;50:295–320.CrossRefGoogle Scholar
  67. 67.
    Stamer WD, Braakman ST, Zhou EH, Ethier CR, Fredberg JJ, Overby DR, et al. Biomechanics of Schlemm’s canal endothelium and intraocular pressure reduction. Prog Retin Eye Res. 2015;44:86–98.PubMedCrossRefGoogle Scholar
  68. 68.
    Kumar J, Epstein DL. Rho GTPase-mediated cytoskeletal organization in Schlemm’s canal cells play a critical role in the regulation of aqueous humor outflow facility. J Cell Biochem. 2011;112:600–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Gong H, Jin X. Potts model partition functions on two families of fractal lattices. Physica A. 2014;414:143–53.CrossRefGoogle Scholar
  70. 70.
    Pattabiraman PP, Maddala R, Rao PV. Regulation of plasticity and fibrogenic activity of trabecular meshwork cells by Rho GTPase signaling. J Cell Physiol. 2014;229:927–42.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhang M, Maddala R, Rao PV. Novel molecular insights into RhoA GTPase-induced resistance to aqueous humor outflow through the trabecular meshwork. Am J Physiol. 2008;295:C1057–70.CrossRefGoogle Scholar
  72. 72.
    Vittitow JL, Garg R, Rowlette LL, Epstein DL, O’Brien ET, Borras T. Gene transfer of dominant-negative RhoA increases outflow facility in perfused human anterior segment cultures. Mol Vis. 2002;8:32–44.PubMedGoogle Scholar
  73. 73.
    Rao PV, Deng P, Maddala R, Epstein DL, Li CY, Shimokawa H. Expression of dominant negative Rho-binding domain of Rho-kinase in organ cultured human eye anterior segments increases aqueous humor outflow. Mol Vis. 2005;11:288–97.PubMedGoogle Scholar
  74. 74.
    Borras T, Buie LK, Spiga MG, Carabana J. Prevention of nocturnal elevation of intraocular pressure by gene transfer of dominant-negative RhoA in rats. JAMA Ophthalmol. 2015;133:182–90.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Pattabiraman PP, Rinkoski T, Poeschla E, Proia A, Challa P, Rao PV. RhoA GTPase-induced ocular hypertension in a rodent model is associated with increased fibrogenic activity in the trabecular meshwork. Am J Pathol. 2015;185:496–512.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Honjo M, Igarahi N, Kurano M, Yatomi Y, Igarashi K, Kano K, et al. Autotaxin-lysophosphatidic acid pathway in intraocular pressure regulation and glaucoma subtypes. Invest Ophthalmol Vis Sci. 2018;59:693–701.
  77. 77.
    Honjo M, Igarahi N, Nishida J, Kurano M, Yatomi Y, Igarashi K, et al. Role of the autotaxin-LPA pathway in dexamethasone-induced fibrotic responses and extracellular matrix production in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2018;59(1):21–30. Scholar
  78. 78.
    Kaufman PL, Barany EH. Loss of acute pilocarpine effect on outflow facility following surgical disinsertion and retrodisplacement of the ciliary muscle from the scleral spur in the cynomolgus monkey. Invest Ophthalmol. 1976;15:793–807.PubMedGoogle Scholar
  79. 79.
    Nakajima E, Nakajima T, Minagawa Y, Shearer TR, Azuma M. Contribution of ROCK in contraction of trabecular meshwork: proposed mechanism for regulating aqueous outflow in monkey and human eyes. J Pharma Sci. 2005;94:701–8.CrossRefGoogle Scholar
  80. 80.
    Inoue T, Pecen P, Maddala R, Skiba NP, Pattabiraman PP, Epstein DL, et al. Characterization of cytoskeleton-enriched protein fraction of the trabecular meshwork and ciliary muscle cells. Invest Ophthalmol Vis Sci. 2010;51:6461–71.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Xin C, Wang RK, Song S, Shen T, Wen J, Martin E, et al. Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion. Exp Eye Res. 2017;158:171–86.PubMedCrossRefGoogle Scholar
  82. 82.
    Kiel JW, Kopczynski CC. Effect of AR-13324 on episcleral venous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther. 2015;31:146–51.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Li G, Mukherjee D, Navarro I, Ashpole NE, Sherwood JM, Chang J, et al. Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes. Eur J Pharmacol. 2016;787:20–31.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tanihara H, Inatani M, Honjo M, Tokushige H, Azuma J, Araie M. Intraocular pressure-lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol. 2008;126:309–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Skaat A, Jasien JV, Ritch R. Efficacy of topically administered Rho-kinase inhibitor AR-12286 in patients with exfoliation syndrome and ocular hypertension or glaucoma. J Glaucoma. 2016;25:e807–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Williams RD, Novack GD, van Haarlem T, Kopczynski C. Ocular hypotensive effect of the Rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension. Am J Ophthalmol. 2011;152(834–41):e1.Google Scholar
  87. 87.
    Lewis RA, Levy B, Ramirez N, Kopczynski CC, Usner DW, Novack GD. Correction: fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100:1016.CrossRefGoogle Scholar
  88. 88.
    Bacharach J, Dubiner HB, Levy B, Kopczynski CC, Novack GD. Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology. 2015;122:302–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Lewis RA, Levy B, Ramirez N, Kopczynski CC, Usner DW, Novack GD. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100:339–44.PubMedCrossRefGoogle Scholar
  90. 90.
    Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Araie M. Phase 2 randomized clinical study of a Rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2013;156:731–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Suganami H, et al. Additive intraocular pressure-lowering effects of the Rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol. 2015;133:755–61.PubMedCrossRefGoogle Scholar
  92. 92.
    Garnock-Jones KP. Ripasudil: first global approval. Drugs. 2014;74:2211–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Inazaki H, Kobayashi S, Anzai Y, Satoh H, Sato S, Inoue M, et al. Efficacy of the additional use of ripasudil, a Rho-kinase inhibitor, in patients with glaucoma inadequately controlled under maximum medical therapy. J Glaucoma. 2017;26:96–100.PubMedGoogle Scholar
  94. 94.
    Inazaki H, Kobayashi S, Anzai Y, Satoh H, Sato S, Inoue M, et al. One-year efficacy of adjunctive use of Ripasudil, a Rho-kinase inhibitor, in patients with glaucoma inadequately controlled with maximum medical therapy. Graefes Arch Clin Exp Ophthalmol. 2017;255:2009–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Matsumura R, Inoue T, Matsumura A, Tanihara H. Efficacy of ripasudil as a second-line medication in addition to a prostaglandin analog in patients with exfoliation glaucoma: a pilot study. Clin Drug Invest. 2017;37:535–9.CrossRefGoogle Scholar
  96. 96.
    Sato S, Hirooka K, Nitta E, Ukegawa K, Tsujikawa A. Additive intraocular pressure lowering effects of the Rho kinase inhibitor, ripasudil in glaucoma patients not able to obtain adequate control after other maximal tolerated medical therapy. Adv Ther. 2016;33:1628–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Terao E, Nakakura S, Fujisawa Y, Fujio Y, Matsuya K, Kobayashi Y, et al. Time course of conjunctival hyperemia induced by a Rho-kinase inhibitor anti-glaucoma eye drop: ripasudil 0.4. Curr Eye Res. 2017;42:738–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Nakagawa H, Koizumi N, Okumura N, Suganami H, Kinoshita S. Morphological changes of human corneal endothelial cells after Rho-associated kinase inhibitor eye drop (ripasudil) administration: a prospective open-label clinical study. PLoS One. 2015;10:e0136802.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Fukushima A, et al. One-year clinical evaluation of 0.4% ripasudil (K-115) in patients with open-angle glaucoma and ocular hypertension. Acta Ophthalmol. 2016;94:e26–34.PubMedCrossRefGoogle Scholar
  100. 100.
    Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Suganami H, et al. Intra-ocular pressure-lowering effects of a Rho kinase inhibitor, ripasudil (K-115), over 24 hours in primary open-angle glaucoma and ocular hypertension: a randomized, open-label, crossover study. Acta Ophthalmol. 2015;93:e254–60.PubMedCrossRefGoogle Scholar
  101. 101.
    Tanna AP, Rademaker AW, Stewart WC, Feldman RM. Meta-analysis of the efficacy and safety of alpha2-adrenergic agonists, beta-adrenergic antagonists, and topical carbonic anhydrase inhibitors with prostaglandin analogs. Arch Ophthalmol. 2010;128:825–33.PubMedCrossRefGoogle Scholar
  102. 102.
    Kitazawa Y, Araie M. Double-masked, phase III comparative study of the combination ophthalmic solution of the 1% dorzolamide hydrochloride/0.5% timolol maleate (MK-0507A) in patients with glaucoma and ocular hypertension. Nippon Ganka Gakkai Zasshi. 2011;115:495–507 (in Japanese).PubMedGoogle Scholar
  103. 103.
    Harris A, Sergott RC, Spaeth GL, Katz JL, Shoemaker JA, Martin BJ. Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol. 1994;118:642–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Rankin SJ. Color Doppler imaging of the retrobulbar circulation in glaucoma. Surv Ophthalmol. 1999;43(Suppl 1):S176–82.PubMedCrossRefGoogle Scholar
  105. 105.
    Nakabayashi S, Kawai M, Yoshioka T, Song YS, Tani T, Yoshida A, et al. Effect of intravitreal Rho kinase inhibitor ripasudil (K-115) on feline retinal microcirculation. Exp Eye Res. 2015;139:132–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Sugiyama T, Shibata M, Kajiura S, Okuno T, Tonari M, Oku H, et al. Effects of fasudil, a Rho-associated protein kinase inhibitor, on optic nerve head blood flow in rabbits. Invest Ophthalmol Vis Sci. 2011;52:64–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Watabe H, Abe S, Yoshitomi T. Effects of Rho-associated protein kinase inhibitors Y-27632 and Y-39983 on isolated rabbit ciliary arteries. Jpn J Ophthalmol. 2011;55:411–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Ohta Y, Takaseki S, Yoshitomi T. Effects of ripasudil hydrochloride hydrate (K-115), a Rho-kinase inhibitor, on ocular blood flow and ciliary artery smooth muscle contraction in rabbits. Jpn J Ophthalmol. 2017;5:423–32.CrossRefGoogle Scholar
  109. 109.
    Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–93.PubMedCrossRefGoogle Scholar
  110. 110.
    Goldhagen B, Proia AD, Epstein DL, Rao PV. Elevated levels of RhoA in the optic nerve head of human eyes with glaucoma. J Glaucoma. 2012;21:530–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Tura A, Schuettauf F, Monnier PP, Bartz-Schmidt KU, Henke-Fahle S. Efficacy of Rho-kinase inhibition in promoting cell survival and reducing reactive gliosis in the rodent retina. Invest Ophthalmol Vis Sci. 2009;50:452–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Hirata A, Inatani M, Inomata Y, Yonemura N, Kawaji T, Honjo M, et al. Y-27632, a Rho-associated protein kinase inhibitor, attenuates neuronal cell death after transient retinal ischemia. Graefes Arch Clin Exp Ophthalmol. 2008;246:51–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Kitaoka Y, Kitaoka Y, Kumai T, Lam TT, Kuribayashi K, Isenoumi K, et al. Involvement of RhoA and possible neuroprotective effect of fasudil, a Rho kinase inhibitor, in NMDA-induced neurotoxicity in the rat retina. Brain Res. 2004;1018:111–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Bermel C, Tönges L, Planchamp V, Gillardon F, Weishaupt JH, Dietz GPH, et al. Combined inhibition of Cdk5 and ROCK additively increase cell survival, but not the regenerative response in regenerating retinal ganglion cells. Mol and Cell Neurosci. 2009;42:427–37.CrossRefGoogle Scholar
  115. 115.
    Sagawa H, Terasaki H, Nakamura M, Ichikawa M, Yata T, Tokita Y, et al. A novel ROCK inhibitor, Y-39983, promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adult cats. Exp Neurol. 2007;205:230–40.PubMedCrossRefGoogle Scholar
  116. 116.
    Van de Velde S, De Groef L, Stalmans I, Moons L, Van Hove I. Toward axonal regeneration and neuroprotection in glaucoma: Rho kinase inhibitors as promising therapeutics. Prog Neurobiol. 2015;131:105–19.PubMedCrossRefGoogle Scholar
  117. 117.
    Yamamoto K, Maruyama K, Himori N, Omodaka K, Yokoyama Y, Shiga Y, et al. The novel Rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucoma. Invest Ophthalmol Vis Sci. 2014;55:7126–36.PubMedCrossRefGoogle Scholar
  118. 118.
    Kitaoka Y, Sase K, Tsukahara C, Kojima K, Shiono A, Kogo J, et al. Axonal Protection by ripasudil, a Rho kinase inhibitor, via modulating autophagy in TNF-induced optic nerve degeneration. Invest Ophthalmol Vis Sci. 2017;58:5056–64.PubMedCrossRefGoogle Scholar
  119. 119.
    Occleston NL, Daniels JT, Tarnuzzer RW, Sethi KK, Alexander RA, Bhattacharya SS, et al. Single exposures to antiproliferatives: long-term effects on ocular fibroblast wound-healing behavior. Invest Ophthalmol Vis Sci. 1997;38:1998–2007.PubMedGoogle Scholar
  120. 120.
    Khaw PT, Occleston NL, Schultz G, Grierson I, Sherwood MB, Larkin G. Activation and suppression of fibroblast function. Eye. 1994;8:188–95.PubMedCrossRefGoogle Scholar
  121. 121.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3:349–63.PubMedCrossRefGoogle Scholar
  122. 122.
    Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol. 2001;159:1009–20.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Meyer-ter-Vehn T, Sieprath S, Katzenberger B, Gebhardt S, Grehn F, Schlunck G. Contractility as a prerequisite for TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci. 2006;47:4895–904.PubMedCrossRefGoogle Scholar
  124. 124.
    Van de Velde S, Van Bergen T, Vandewalle E, Kindt N, Castermans K, Moons L, et al. Rho kinase inhibitor AMA0526 improves surgical outcome in a rabbit model of glaucoma filtration surgery. Prog Brain Res. 2015;220:283–97.PubMedCrossRefGoogle Scholar
  125. 125.
    Futakuchi A, Inoue T, Fujimoto T, Inoue-Mochita M, Kawai M, Tanihara H. The effects of ripasudil (K-115), a Rho kinase inhibitor, on activation of human conjunctival fibroblasts. Exp Eye Res. 2016;149:107–15.PubMedCrossRefGoogle Scholar
  126. 126.
    Kojima S, Sugiyama T, Takai S, Jin D, Ueki M, Oku H, et al. Effects of ripasudil, a Rho-associated protein kinase inhibitor, on conjunctival scarring in a canine filtration surgery model. Curr Top Pharmacol. 2015;19:67–73.Google Scholar
  127. 127.
    SundarRaj N, Kinchington PR, Wessel H, Goldblatt B, Hassell J, Vergnes JP, et al. A Rho-associated protein kinase: differentially distributed in limbal and corneal epithelia. Invest Ophthalmol Vis Sci. 1998;39:1266–72.PubMedGoogle Scholar
  128. 128.
    Yin J, Lu J, Yu FS. Role of small GTPase Rho in regulating corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2008;49:900–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Anderson SC, Stone C, Tkach L, SundarRaj N. Rho and Rho-kinase (ROCK) signaling in adherens and gap junction assembly in corneal epithelium. Invest Ophthalmol Vis Sci. 2002;43:978–86.PubMedGoogle Scholar
  130. 130.
    Kim A, Petroll WM. Microtubule regulation of corneal fibroblast morphology and mechanical activity in 3-D culture. Exp Eye Res. 2007;85:546–56.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kim A, Lakshman N, Petroll WM. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp Cell Res. 2006;312:3683–92.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Yin J, Yu FS. Rho kinases regulate corneal epithelial wound healing. Am J Physiol Cell Physiol. 2008;295:378–87.CrossRefGoogle Scholar
  133. 133.
    Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Hirata K, et al. Enhancement of corneal endothelium wound healing by Rho-associated kinase (ROCK) inhibitor eye drops. Br J Ophthalmol. 2011;95:1006–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Okumura N, Koizumi N, Kay EP, Ueno M, Sakamoto Y, Nakamura S, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2013;54:2493–502.PubMedCrossRefGoogle Scholar
  135. 135.
    Pipparelli A, Arsenijevic Y, Thuret G, Gain P, Nicolas M, Majo F. ROCK inhibitor enhances adhesion and wound healing of human corneal endothelial cells. PLoS One. 2013;8:e62095.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Okumura N, Inoue R, Okazaki Y, Nakano S, Nakagawa H, Kinoshita S, et al. Effect of the Rho Kinase Inhibitor Y-27632 on Corneal Endothelial Wound Healing. Invest Ophthalmol Vis Sci. 2015;56:6067–74.PubMedCrossRefGoogle Scholar
  137. 137.
    Koizumi N, Okumura N, Ueno M, Kinoshita S. New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops. Cornea. 2014;33 Suppl 11:S25–31.
  138. 138.
    Okumura N, Okazaki Y, Inoue R, Kakutani K, Nakano S, Kinoshita S, et al. Effect of the Rho-associated kinase inhibitor eye drop (ripasudil) on corneal endothelial wound healing. Invest Ophthalmol Vis Sci. 2016;57(3):1284–92. Scholar
  139. 139.
    Okumura N, Kakutani K, Inoue R, Matsumoto D, Shimada T, Nakahara M, et al. Generation and feasibility assessment of a new vehicle for cell-based therapy for treating corneal endothelial dysfunction. PLoS One. 2016;11:e0158427.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Okumura N, Kinoshita S, Koizumi N. Cell-based approach for treatment of corneal endothelial dysfunction. Cornea. 2014;33 Suppl 11:S37–41.
  141. 141.
    Okumura N, Kinoshita S, Koizumi N. The Role of Rho Kinase Inhibitors in Corneal Endothelial Dysfunction. Curr Pharm Des. 2017;23(4):660–6. Scholar
  142. 142.
    Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med. 1999;5:221–5.PubMedCrossRefGoogle Scholar
  143. 143.
    Yoshizaki H, Ohba Y, Parrini MC, Dulyaninova NG, Bresnick AR, Mochizuki N, et al. Cell type-specific regulation of RhoA activity during cytokinesis. J Biol Chem. 2004;279:44756–62.PubMedCrossRefGoogle Scholar
  144. 144.
    Harvey SA, Anderson SC, SundarRaj N. Downstream effects of ROCK signaling in cultured human corneal stromal cells: microarray analysis of gene expression. Invest Ophthalmol Vis Sci. 2004;45:2168–76.PubMedCrossRefGoogle Scholar
  145. 145.
    Yamada H, Yoneda M, Inaguma S, Gosho M, Murasawa Y, Isogai Z, et al. A Rho-associated kinase inhibitor protects permeability in a cell culture model of ocular disease, and reduces aqueous flare in anterior uveitis. J Ocul Pharmacol Ther. 2017;33:176–85.PubMedCrossRefGoogle Scholar
  146. 146.
    Uchida T, Honjo M, Yamagishi R, Aihara M. The anti-inflammatory effect of ripasudil (K-115), a rho kinase (ROCK) inhibitor, on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2017;58:5584–93.PubMedCrossRefGoogle Scholar
  147. 147.
    Hollanders K, Hove IV, Sergeys J, Bergen TV, Lefevere E, Kindt N, et al. AMA0428, a potent rock inhibitor, attenuates early and late experimental diabetic retinopathy. Curr Eye Res. 2017;42:260–72.PubMedCrossRefGoogle Scholar
  148. 148.
    Sijnave D, Van Bergen T, Castermans K, Kindt N, Vandewalle E, Stassen JM, et al. Inhibition of Rho-associated kinase prevents pathological wound healing and neovascularization after corneal trauma. Cornea. 2015;34:1120–9.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  1. 1.Department of Ophthalmology, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Department of Ophthalmology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan

Personalised recommendations