Skip to main content

Advertisement

Log in

Evaluation of anterior chamber parameters with spectral-domain optical coherence tomography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate several anterior chamber parameters in healthy young adults using spectral-domain optical coherence tomography and to describe the repeatability and reproducibility of this method.

Study design

Prospective clinical study.

Methods

Fifty-two eyes of 52 healthy volunteers were enrolled. Manual measurements of the anterior chamber angle (ACA500 and ACA750), angle opening distance (AOD500 and AOD750), angle-to-angle distance (ATA), anterior chamber width (ACW), and lens vault (LV) were obtained.

Results

The mean nasal ACA500 was 44.87 ± 12.92°; ACA750, 43.94 ± 10.41°; AOD500, 672.54 ± 270.19 µm; AOD750, 881.87 ± 290.55 µm. The mean temporal ACA500 was 41.46 ± 11.20°; ACA750, 41.27 ± 11.31°; AOD500, 603.15 ± 232.28 µm; AOD750, 823.46 ± 308.76 µm. The differences between the corresponding nasal and temporal parameters were statistically significant. The ACW was 11.97 ± 0.42 mm, the ATA was 12.10 ± 0.43 mm, and the LV was 3.71 ± 232.93 µm. The ACA was highly associated with the LV. The intraclass correlation coefficients ranged from 0.984 to 0.999 for the intraobserver repeatability and from 0.966 to 0.998 for the interobserver reproducibility.

Conclusions

This study assessed anterior chamber parameters in healthy young adults using spectral-domain optical coherence tomography. This technique reveals the spatial relationships of the ocular structures, provides high-resolution images, and results in high degrees of intraobserver and interobserver repeatabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McAlinden C, Khadka J, Pesudovs K. A comprehensive evaluation of the precision (repeatability and reproducibility) of the Oculus Pentacam HR. Invest Ophthalmol Vis Sci. 2011;52:7731–7.

    Article  PubMed  Google Scholar 

  2. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharma R, Sharma A, Arora T, Sharma S, Sobti A, Jha B, et al. Application of anterior segment optical coherence tomography in glaucoma. Surv Ophthalmol. 2014;59:311–27.

    Article  PubMed  Google Scholar 

  4. de Leon J, Tun T, Perera S, Aung T. Angle closure imaging: a review. Curr Ophthalmol Rep. 2013;1:80–8.

    Article  Google Scholar 

  5. Nongpiur ME, He M, Amerasinghe N, Friedman DS, Tay W, Baskaran M, et al. Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology. 2011;118:474–9.

    Article  PubMed  Google Scholar 

  6. Nongpiur ME, Gong T, Lee HK, Perera SA, Cheng L, Foo L, et al. Subgrouping of primary angle-closure suspects based on anterior segment optical coherence tomography parameters. Ophthalmology. 2013;120:2525–31.

    Article  PubMed  Google Scholar 

  7. Ozaki M, Nongpiur ME, Aung T, He M, Mizoguchi T. Increased lens vault as a risk factor for angle closure: confirmation in a Japanese population. Graefes Arch Clin Exp Ophthalmol. 2012;250:1863–8.

    Article  PubMed  Google Scholar 

  8. Mak H, Xu G, Leung CK. Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. Ophthalmology. 2013;120:2517–24.

    Article  PubMed  Google Scholar 

  9. Simpson T, Fonn D. Optical coherence tomography of the anterior segment. Ocul Surf. 2008;6:117–27.

    Article  PubMed  Google Scholar 

  10. Nongpiur ME, Haaland BA, Friedman DS, Perera SA, He M, Foo L, et al. Classification algorithms based on anterior segment optical coherence tomography measurements for detection of angle closure. Ophthalmology. 2013;120:48–54.

    Article  PubMed  Google Scholar 

  11. Moghimi S, Vahedian Z, Fakhraie G, Ghaffari R, Eslami Y, Jabarvand M, et al. Ocular biometry in the subtypes of angle closure: an anterior segment optical coherence tomography study. Am J Ophthalmol. 2013;155:664–73e1.

  12. Lin S. Role of lens vault in subtypes of angle closure in Iranian subjects. Eye. 2014;28:337–43.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang G, Gonzalez E, Lee R, Chen Y, He M, Lin SC. Association of biometric factors with anterior chamber angle widening and intraocular pressure reduction after uneventful phacoemulsification for cataract. J Cataract Refract Surg. 2012;38:108–16.

    Article  PubMed  Google Scholar 

  14. Bald M, Li Y, Huang D. Anterior chamber angle evaluation with fourier-domain optical coherence tomography. J Ophthalmol. 2012;2012:103704.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alio JL, Abbouda A, Peña-Garcia P. Anterior segment optical coherence tomography of long-term phakic angle-supported intraocular lenses. Am J Ophthalmol. 2013;156:894–901e2.

  16. Hassani RTJ, Liang H, El Sanharawi M, Brasnu E, Kallel S, Labbe A, et al. En-face optical coherence tomography as a novel tool for exploring the ocular surface: a pilot comparative study to conventional B-scans and in vivo confocal microscopy. Ocul Surf. 2014;12:285–306.

    Article  Google Scholar 

  17. Abou Shousha M, Perez VL, Fraga Santini Canto AP, Vaddavalli PK, Sayyad FE, Cabot F, et al. The use of Bowman’s layer vertical topographic thickness map in the diagnosis of keratoconus. Ophthalmology. 2014;121:988–93.

    Article  PubMed  Google Scholar 

  18. Thomas BJ, Galor A, Nanji AA, El Sayyad F, Wang J, Dubovy SR, et al. Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia. Ocul Surf. 2014;12:46–58.

    Article  PubMed  Google Scholar 

  19. Wang J, Abou Shousha M, Perez VL, Karp CL, Yoo SH, Shen M, et al. Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye. Ophthalmic Surg Lasers Imaging. 2011;42(Suppl):S15–27.

    Article  PubMed  Google Scholar 

  20. Friedman DS, He M. Anterior chamber angle assessment techniques. Surv Ophthalmol. 2008;53:250–73.

    Article  PubMed  Google Scholar 

  21. Smith SD, Singh K, Lin SC, Chen PP, Chen TC, Francis BA, et al. Evaluation of the anterior chamber angle in glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology. 2013;120:1985–97.

    Article  PubMed  Google Scholar 

  22. Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123:1053–9.

    Article  PubMed  Google Scholar 

  23. Piñero DP, Plaza AB, Alió JL. Anterior segment biometry with 2 imaging technologies: very-high-frequency ultrasound scanning versus optical coherence tomography. J Cataract Refract Surg. 2008;34:95–102.

    Article  PubMed  Google Scholar 

  24. Nemeth G, Hassan Z, Szalai E, Berta A, Modis L Jr. Comparative analysis of white-to-white and angle-to-angle distance measurements with partial coherence interferometry and optical coherence tomography. J Cataract Refract Surg. 2010;36:1862–6.

    Article  PubMed  Google Scholar 

  25. Tan GS, He M, Zhao W, Sakata LM, Li J, Nongpiur ME, et al. Determinants of lens vault and association with narrow angles in patients from Singapore. Am J Ophthalmol. 2012;154:39–46.

    Article  PubMed  Google Scholar 

  26. Chin EK, Sedeek RW, Li Y, Beckett L, Redenbo E, Chandra K, et al. Reproducibility of macular thickness measurement among five OCT instruments: effects of image resolution, image registration, and eye tracking. Ophthalmic Surg Lasers Imaging. 2012;43:97–108.

    Article  PubMed  Google Scholar 

  27. Shapiro BL, Cortés DE, Chin EK, Li JY, Werner JS, Redenbo E, et al. High-resolution spectral domain anterior segment optical coherence tomography in type 1 Boston keratoprosthesis. Cornea. 2013;32:951–5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Müller M, Dahmen G, Pörksen E, Geerling G, Laqua H, Ziegler A, et al. Anterior chamber angle measurement with optical coherence tomography: intraobserver and interobserver variability. J Cataract Refract Surg. 2006;32:1803–8.

    Article  PubMed  Google Scholar 

  29. Aptel F, Chiquet C, Gimbert A, Romanet J, Thuret G, Gain P, et al. Anterior segment biometry using spectral-domain optical coherence tomography. J Refract Surg. 2014;30:354–60.

    Article  PubMed  Google Scholar 

  30. Kim DY, Sung KR, Kang SY, Cho JW, Lee KS, Park SB, et al. Characteristics and reproducibility of anterior chamber angle assessment by anterior-segment optical coherence tomography. Acta Ophthalmol. 2011;89:435–41.

    Article  PubMed  Google Scholar 

  31. Radhakrishnan S, See J, Smith SD, Nolan WP, Ce Z, Friedman DS, et al. Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:3683–8.

    Article  PubMed  Google Scholar 

  32. Nolan WP, See JL, Chew PTK, Friedman DS, Smith SD, Radhakrishnan S, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology. 2007;114:33–9.

    Article  PubMed  Google Scholar 

  33. Sakata LM, Lavanya R, Friedman DS, Aung HT, Gao H, Kumar RS, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008;115:769–74.

    Article  PubMed  Google Scholar 

  34. Masoodi H, Jafarzadehpur E, Esmaeili A, Abolbashari F, Ahmadi Hosseini SM. Evaluation of anterior chamber angle under dark and light conditions in angle closure glaucoma: an anterior segment OCT study. Cont Lens Anterior Eye. 2014;37:300–4.

    Article  PubMed  Google Scholar 

  35. Leung CK, Palmiero PM, Weinreb RN, Li H, Sbeity Z, Dorairaj S, et al. Comparisons of anterior segment biometry between Chinese and Caucasians using anterior segment optical coherence tomography. Br J Ophthalmol. 2010;94:1184–9.

    Article  CAS  PubMed  Google Scholar 

  36. Römkens HCS, Beckers HJM, Frusch M, Berendschot TTJM, de Brabander J, Webers CAB. Reproducibility of anterior chamber angle analyses with the swept-source optical coherence tomography in young, healthy caucasians. Invest Ophthalmol Vis Sci. 2014;55:3999–4004.

    Article  PubMed  Google Scholar 

  37. Liu S, Yu M, Ye C, Lam DSC, Leung CK. Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. Invest Ophthalmol Vis Sci. 2011;52:8598–603.

    Article  PubMed  Google Scholar 

  38. Leung CK, Li H, Weinreb RN, Liu J, Cheung CYL, Lai RYK, et al. Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and Visante OCT. Invest Ophthalmol Vis Sci. 2008;49:3469–74.

    Article  PubMed  Google Scholar 

  39. Cumba RJ, Radhakrishnan S, Bell NP, Nagi KS, Chuang AZ, Lin SC, et al. Reproducibility of scleral spur identification and angle measurements using fourier domain anterior segment optical coherence tomography. J Ophthalmol. 2012;2012:487309.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nongpiur ME, Sakata LM, Friedman DS, He M, Chan YH, Lavanya R, et al. Novel association of smaller anterior chamber width with angle closure in Singaporeans. Ophthalmology. 2010;117:1967–73.

    Article  PubMed  Google Scholar 

  41. Nongpiur ME, Haaland BA, Perera SA, Friedman DS, He M, Sakata LM, et al. Development of a score and probability estimate for detecting angle closure based on anterior segment optical coherence tomography. Am J Ophthalmol. 2014;157:32–8e1.

  42. Tun TA, Baskaran M, Perera SA, Chan AS, Cheng CY, Htoon HM, et al. Sectoral variations of iridocorneal angle width and iris volume in Chinese Singaporeans: a swept-source optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol. 2014;252:1127–32.

    Article  PubMed  Google Scholar 

  43. Sakata LM, Lavanya R, Friedman DS, Aung HT, Seah SK, Foster PJ, et al. Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol. 2008;126:181–5.

    Article  PubMed  Google Scholar 

  44. Araie M. Test–retest variability in structural parameters measured with glaucoma imaging devices. Jpn J Ophthalmol. 2013;57:1–24.

    Article  PubMed  Google Scholar 

  45. Dastiridou AI, Pan X, Zhang Z, Marion KM, Francis BA, Sadda SR, et al. Comparison of physiologic versus pharmacologic mydriasis on anterior chamber angle measurements using spectral domain optical coherence tomography. J Ophthalmol. 2015;2015:845643

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Publication of this article was supported by the General Council of Aragon (Diputación General de Aragón) Group B99, Health Research Fund Instituto de Salud Carlos III (Fondo de Investigación Sanitaria, Spanish Ministry of Health) PI13/01124, and Health Institute Carlos III (Instituto de Salud Carlos III) RETICS RD16/0008/0016.

Conflicts of interest

I. Pinilla, None; C. L. de la Fuente, None; F. Segura, None; E. O. Hospital, None; A. S. -Cano, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Pinilla Lozano.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinilla Lozano, I., López de la Fuente, C., Segura, F. et al. Evaluation of anterior chamber parameters with spectral-domain optical coherence tomography. Jpn J Ophthalmol 62, 209–215 (2018). https://doi.org/10.1007/s10384-017-0548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-017-0548-3

Keywords

Navigation