Japanese Journal of Ophthalmology

, Volume 62, Issue 2, pp 209–215 | Cite as

Evaluation of anterior chamber parameters with spectral-domain optical coherence tomography

  • Isabel Pinilla LozanoEmail author
  • Carmen López de la Fuente
  • Francisco Segura
  • Elvira Orduna Hospital
  • Ana Sánchez-Cano
Clinical Investigation



To evaluate several anterior chamber parameters in healthy young adults using spectral-domain optical coherence tomography and to describe the repeatability and reproducibility of this method.

Study design

Prospective clinical study.


Fifty-two eyes of 52 healthy volunteers were enrolled. Manual measurements of the anterior chamber angle (ACA500 and ACA750), angle opening distance (AOD500 and AOD750), angle-to-angle distance (ATA), anterior chamber width (ACW), and lens vault (LV) were obtained.


The mean nasal ACA500 was 44.87 ± 12.92°; ACA750, 43.94 ± 10.41°; AOD500, 672.54 ± 270.19 µm; AOD750, 881.87 ± 290.55 µm. The mean temporal ACA500 was 41.46 ± 11.20°; ACA750, 41.27 ± 11.31°; AOD500, 603.15 ± 232.28 µm; AOD750, 823.46 ± 308.76 µm. The differences between the corresponding nasal and temporal parameters were statistically significant. The ACW was 11.97 ± 0.42 mm, the ATA was 12.10 ± 0.43 mm, and the LV was 3.71 ± 232.93 µm. The ACA was highly associated with the LV. The intraclass correlation coefficients ranged from 0.984 to 0.999 for the intraobserver repeatability and from 0.966 to 0.998 for the interobserver reproducibility.


This study assessed anterior chamber parameters in healthy young adults using spectral-domain optical coherence tomography. This technique reveals the spatial relationships of the ocular structures, provides high-resolution images, and results in high degrees of intraobserver and interobserver repeatabilities.


Anterior chamber angle Angle opening distance Anterior chamber width Lens vault Optical coherence tomography 



Publication of this article was supported by the General Council of Aragon (Diputación General de Aragón) Group B99, Health Research Fund Instituto de Salud Carlos III (Fondo de Investigación Sanitaria, Spanish Ministry of Health) PI13/01124, and Health Institute Carlos III (Instituto de Salud Carlos III) RETICS RD16/0008/0016.

Conflicts of interest

I. Pinilla, None; C. L. de la Fuente, None; F. Segura, None; E. O. Hospital, None; A. S. -Cano, None.


  1. 1.
    McAlinden C, Khadka J, Pesudovs K. A comprehensive evaluation of the precision (repeatability and reproducibility) of the Oculus Pentacam HR. Invest Ophthalmol Vis Sci. 2011;52:7731–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sharma R, Sharma A, Arora T, Sharma S, Sobti A, Jha B, et al. Application of anterior segment optical coherence tomography in glaucoma. Surv Ophthalmol. 2014;59:311–27.CrossRefPubMedGoogle Scholar
  4. 4.
    de Leon J, Tun T, Perera S, Aung T. Angle closure imaging: a review. Curr Ophthalmol Rep. 2013;1:80–8.CrossRefGoogle Scholar
  5. 5.
    Nongpiur ME, He M, Amerasinghe N, Friedman DS, Tay W, Baskaran M, et al. Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology. 2011;118:474–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Nongpiur ME, Gong T, Lee HK, Perera SA, Cheng L, Foo L, et al. Subgrouping of primary angle-closure suspects based on anterior segment optical coherence tomography parameters. Ophthalmology. 2013;120:2525–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Ozaki M, Nongpiur ME, Aung T, He M, Mizoguchi T. Increased lens vault as a risk factor for angle closure: confirmation in a Japanese population. Graefes Arch Clin Exp Ophthalmol. 2012;250:1863–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Mak H, Xu G, Leung CK. Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. Ophthalmology. 2013;120:2517–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Simpson T, Fonn D. Optical coherence tomography of the anterior segment. Ocul Surf. 2008;6:117–27.CrossRefPubMedGoogle Scholar
  10. 10.
    Nongpiur ME, Haaland BA, Friedman DS, Perera SA, He M, Foo L, et al. Classification algorithms based on anterior segment optical coherence tomography measurements for detection of angle closure. Ophthalmology. 2013;120:48–54.CrossRefPubMedGoogle Scholar
  11. 11.
    Moghimi S, Vahedian Z, Fakhraie G, Ghaffari R, Eslami Y, Jabarvand M, et al. Ocular biometry in the subtypes of angle closure: an anterior segment optical coherence tomography study. Am J Ophthalmol. 2013;155:664–73e1.Google Scholar
  12. 12.
    Lin S. Role of lens vault in subtypes of angle closure in Iranian subjects. Eye. 2014;28:337–43.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huang G, Gonzalez E, Lee R, Chen Y, He M, Lin SC. Association of biometric factors with anterior chamber angle widening and intraocular pressure reduction after uneventful phacoemulsification for cataract. J Cataract Refract Surg. 2012;38:108–16.CrossRefPubMedGoogle Scholar
  14. 14.
    Bald M, Li Y, Huang D. Anterior chamber angle evaluation with fourier-domain optical coherence tomography. J Ophthalmol. 2012;2012:103704.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Alio JL, Abbouda A, Peña-Garcia P. Anterior segment optical coherence tomography of long-term phakic angle-supported intraocular lenses. Am J Ophthalmol. 2013;156:894–901e2.Google Scholar
  16. 16.
    Hassani RTJ, Liang H, El Sanharawi M, Brasnu E, Kallel S, Labbe A, et al. En-face optical coherence tomography as a novel tool for exploring the ocular surface: a pilot comparative study to conventional B-scans and in vivo confocal microscopy. Ocul Surf. 2014;12:285–306.CrossRefGoogle Scholar
  17. 17.
    Abou Shousha M, Perez VL, Fraga Santini Canto AP, Vaddavalli PK, Sayyad FE, Cabot F, et al. The use of Bowman’s layer vertical topographic thickness map in the diagnosis of keratoconus. Ophthalmology. 2014;121:988–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Thomas BJ, Galor A, Nanji AA, El Sayyad F, Wang J, Dubovy SR, et al. Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia. Ocul Surf. 2014;12:46–58.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang J, Abou Shousha M, Perez VL, Karp CL, Yoo SH, Shen M, et al. Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye. Ophthalmic Surg Lasers Imaging. 2011;42(Suppl):S15–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Friedman DS, He M. Anterior chamber angle assessment techniques. Surv Ophthalmol. 2008;53:250–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Smith SD, Singh K, Lin SC, Chen PP, Chen TC, Francis BA, et al. Evaluation of the anterior chamber angle in glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology. 2013;120:1985–97.CrossRefPubMedGoogle Scholar
  22. 22.
    Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123:1053–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Piñero DP, Plaza AB, Alió JL. Anterior segment biometry with 2 imaging technologies: very-high-frequency ultrasound scanning versus optical coherence tomography. J Cataract Refract Surg. 2008;34:95–102.CrossRefPubMedGoogle Scholar
  24. 24.
    Nemeth G, Hassan Z, Szalai E, Berta A, Modis L Jr. Comparative analysis of white-to-white and angle-to-angle distance measurements with partial coherence interferometry and optical coherence tomography. J Cataract Refract Surg. 2010;36:1862–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Tan GS, He M, Zhao W, Sakata LM, Li J, Nongpiur ME, et al. Determinants of lens vault and association with narrow angles in patients from Singapore. Am J Ophthalmol. 2012;154:39–46.CrossRefPubMedGoogle Scholar
  26. 26.
    Chin EK, Sedeek RW, Li Y, Beckett L, Redenbo E, Chandra K, et al. Reproducibility of macular thickness measurement among five OCT instruments: effects of image resolution, image registration, and eye tracking. Ophthalmic Surg Lasers Imaging. 2012;43:97–108.CrossRefPubMedGoogle Scholar
  27. 27.
    Shapiro BL, Cortés DE, Chin EK, Li JY, Werner JS, Redenbo E, et al. High-resolution spectral domain anterior segment optical coherence tomography in type 1 Boston keratoprosthesis. Cornea. 2013;32:951–5.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Müller M, Dahmen G, Pörksen E, Geerling G, Laqua H, Ziegler A, et al. Anterior chamber angle measurement with optical coherence tomography: intraobserver and interobserver variability. J Cataract Refract Surg. 2006;32:1803–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Aptel F, Chiquet C, Gimbert A, Romanet J, Thuret G, Gain P, et al. Anterior segment biometry using spectral-domain optical coherence tomography. J Refract Surg. 2014;30:354–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim DY, Sung KR, Kang SY, Cho JW, Lee KS, Park SB, et al. Characteristics and reproducibility of anterior chamber angle assessment by anterior-segment optical coherence tomography. Acta Ophthalmol. 2011;89:435–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Radhakrishnan S, See J, Smith SD, Nolan WP, Ce Z, Friedman DS, et al. Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:3683–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Nolan WP, See JL, Chew PTK, Friedman DS, Smith SD, Radhakrishnan S, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology. 2007;114:33–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Sakata LM, Lavanya R, Friedman DS, Aung HT, Gao H, Kumar RS, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008;115:769–74.CrossRefPubMedGoogle Scholar
  34. 34.
    Masoodi H, Jafarzadehpur E, Esmaeili A, Abolbashari F, Ahmadi Hosseini SM. Evaluation of anterior chamber angle under dark and light conditions in angle closure glaucoma: an anterior segment OCT study. Cont Lens Anterior Eye. 2014;37:300–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Leung CK, Palmiero PM, Weinreb RN, Li H, Sbeity Z, Dorairaj S, et al. Comparisons of anterior segment biometry between Chinese and Caucasians using anterior segment optical coherence tomography. Br J Ophthalmol. 2010;94:1184–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Römkens HCS, Beckers HJM, Frusch M, Berendschot TTJM, de Brabander J, Webers CAB. Reproducibility of anterior chamber angle analyses with the swept-source optical coherence tomography in young, healthy caucasians. Invest Ophthalmol Vis Sci. 2014;55:3999–4004.CrossRefPubMedGoogle Scholar
  37. 37.
    Liu S, Yu M, Ye C, Lam DSC, Leung CK. Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. Invest Ophthalmol Vis Sci. 2011;52:8598–603.CrossRefPubMedGoogle Scholar
  38. 38.
    Leung CK, Li H, Weinreb RN, Liu J, Cheung CYL, Lai RYK, et al. Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and Visante OCT. Invest Ophthalmol Vis Sci. 2008;49:3469–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Cumba RJ, Radhakrishnan S, Bell NP, Nagi KS, Chuang AZ, Lin SC, et al. Reproducibility of scleral spur identification and angle measurements using fourier domain anterior segment optical coherence tomography. J Ophthalmol. 2012;2012:487309.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nongpiur ME, Sakata LM, Friedman DS, He M, Chan YH, Lavanya R, et al. Novel association of smaller anterior chamber width with angle closure in Singaporeans. Ophthalmology. 2010;117:1967–73.CrossRefPubMedGoogle Scholar
  41. 41.
    Nongpiur ME, Haaland BA, Perera SA, Friedman DS, He M, Sakata LM, et al. Development of a score and probability estimate for detecting angle closure based on anterior segment optical coherence tomography. Am J Ophthalmol. 2014;157:32–8e1.Google Scholar
  42. 42.
    Tun TA, Baskaran M, Perera SA, Chan AS, Cheng CY, Htoon HM, et al. Sectoral variations of iridocorneal angle width and iris volume in Chinese Singaporeans: a swept-source optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol. 2014;252:1127–32.CrossRefPubMedGoogle Scholar
  43. 43.
    Sakata LM, Lavanya R, Friedman DS, Aung HT, Seah SK, Foster PJ, et al. Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol. 2008;126:181–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Araie M. Test–retest variability in structural parameters measured with glaucoma imaging devices. Jpn J Ophthalmol. 2013;57:1–24.CrossRefPubMedGoogle Scholar
  45. 45.
    Dastiridou AI, Pan X, Zhang Z, Marion KM, Francis BA, Sadda SR, et al. Comparison of physiologic versus pharmacologic mydriasis on anterior chamber angle measurements using spectral domain optical coherence tomography. J Ophthalmol. 2015;2015:845643CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2017

Authors and Affiliations

  • Isabel Pinilla Lozano
    • 1
    • 2
    • 3
    Email author
  • Carmen López de la Fuente
    • 2
    • 4
  • Francisco Segura
    • 2
    • 4
  • Elvira Orduna Hospital
    • 2
    • 5
  • Ana Sánchez-Cano
    • 2
    • 4
  1. 1.Department of Surgery, Gynecology and ObstetricsUniversity of ZaragozaZaragozaSpain
  2. 2.Aragon Institute for Health Research (IIS Aragon)ZaragozaSpain
  3. 3.Department of OphthalmologyLozano Blesa University HospitalZaragozaSpain
  4. 4.Department of Applied PhysicsUniversity of ZaragozaZaragozaSpain
  5. 5.Department of Physiology and PharmacologyUniversity of ZaragozaZaragozaSpain

Personalised recommendations