Skip to main content

Advertisement

Log in

Renin–angiotensin system involvement in the oxidative stress-induced neurodegeneration of cultured retinal ganglion cells

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To analyze the influence of oxidative stress on retinal ganglion cells (RGCs) by using a selective culture system of rat RGCs.

Methods

Rat RGCs were purified by a two-step immunopanning procedure and cultured either with or without antioxidant (AO) compounds. Reactive oxygen species (ROS) in RGCs were analyzed using dihydroethidium. Expression of angiotensin II, cleaved caspase 3, and netrin-1 was analyzed by immunocytochemistry. Live RGCs were detected by use of calcein-acetoxymethyl ester. The roles of angiotensin II type 1 receptor (AT1R) signaling and netrin-1 were analyzed by use of an AT1R blocker (telmisartan) and an anti-netrin-1 neutralizing antibody, respectively.

Results

ROS and angiotensin II were induced in RGCs cultured without AO compounds (AO−). In these cultures, the number of live RGCs decreased and expression of cleaved and activated caspase 3 increased, but these changes were attenuated by addition of the AT1R blocker. Reduction in netrin-1 expression under the AO− condition was also prevented by the AT1R blocker. The AT1R blocker’s effects on RGC survival and reduction in cleaved caspase 3-positive cells were cancelled by the anti-netrin-1 neutralizing antibody.

Conclusions

Oxidative stress induced cell death through AT1R signaling and netrin-1 reduction in cultured RGCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ozawa Y, Sasaki M, Takahashi N, Kamoshita M, Miyake S, Tsubota K. Neuroprotective effects of lutein in the retina. Curr Pharm Des. 2012;18:51–6.

    Article  PubMed  CAS  Google Scholar 

  2. Yuki K, Ozawa Y, Yoshida T, Kurihara T, Hirasawa M, Ozeki N, et al. Retinal ganglion cell loss in superoxide dismutase 1 deficiency. Invest Ophthalmol Vis Sci. 2011;52:4143–50.

    Article  PubMed  CAS  Google Scholar 

  3. Yuki K, Murat D, Kimura I, Ohtake Y, Tsubota K. Reduced-serum vitamin C and increased uric acid levels in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2010;248:243–8.

    Article  PubMed  CAS  Google Scholar 

  4. Yang H, Hirooka K, Fukuda K, Shiraga F. Neuroprotective effects of angiotensin II type 1 receptor blocker in a rat model of chronic glaucoma. Invest Ophthalmol Vis Sci. 2009;50:5800–4.

    Article  PubMed  Google Scholar 

  5. Hirooka K, Baba T, Fujimura T, Shiraga F. Prevention of visual field defect progression with angiotensin-converting enzyme inhibitor in eyes with normal-tension glaucoma. Am J Ophthalmol. 2006;142:523–5.

    Article  PubMed  CAS  Google Scholar 

  6. Hashizume K, Mashima Y, Fumayama T, Ohtake Y, Kimura I, Yoshida K, et al. Genetic polymorphisms in the angiotensin II receptor gene and their association with open-angle glaucoma in a Japanese population. Invest Ophthalmol Vis Sci. 2005;46:1993–2001.

    Article  PubMed  Google Scholar 

  7. Ozkur M, Erbagci I, Gungor K, Nacak M, Aynacioglu S, Bekir NA. Angiotensin-converting enzyme insertion–deletion polymorphism in primary open-angle glaucoma. Ophthalmologica. 2004;218:415–8.

    Article  PubMed  CAS  Google Scholar 

  8. Chen P, Guo AM, Edwards PA, Trick G, Scicli AG. Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1619–29.

    Article  PubMed  CAS  Google Scholar 

  9. Ozawa Y, Kurihara T, Sasaki M, Ban N, Yuki K, Kubota S, et al. Neural degeneration in the retina of the streptozotocin-induced type 1 diabetes model. Exp Diabetes Res. 2011;108328.

  10. Inatani M. Molecular mechanisms of optic axon guidance. Naturwissenschaften. 2005;92:549–61.

    Article  PubMed  CAS  Google Scholar 

  11. Chan SS, Zheng H, Su MW, Wilk R, Killeen MT, Hedgecock EM, et al. UNC-40, a C. elegans homolog of DCC (deleted in colorectal cancer), is required in motile cells responding to UNC-6 netrin cues. Cell. 1996;87:187–95.

    Article  PubMed  CAS  Google Scholar 

  12. Deiner MS, Kennedy TE, Fazeli A, Serafini T, Tessier-Lavigne M, Sretavan DW. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron. 1997;19:575–89.

    Article  PubMed  CAS  Google Scholar 

  13. Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK, Murphy KJ, et al. The axonal attractant netrin-1 is an angiogenic factor. Proc Natl Acad Sci. 2004;101:16210–5.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F, et al. Netrins promote developmental and therapeutic angiogenesis. Science. 2006;313:640–4.

    Article  PubMed  CAS  Google Scholar 

  15. Xu H, Liu J, Xiong S, Le YZ, Xia X. Suppression of retinal neovascularization by lentivirus-mediated netrin-1 small hairpin RNA. Ophthalmic Res. 2011;47:163–9.

    Article  PubMed  Google Scholar 

  16. Arakawa H. Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer. 2004;4:978–87.

    Article  PubMed  CAS  Google Scholar 

  17. Furne C, Rama N, Corset V, Chedotal A, Mehlen P. Netrin-1 is a survival factor during commissural neuron navigation. Proc Natl Acad Sci. 2008;105:14465–70.

    Article  PubMed  CAS  Google Scholar 

  18. Tang X, Jang SW, Okada M, Chan CB, Feng Y, Liu Y, et al. Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC5B. Nat Cell Biol. 2008;10:698–706.

    Article  PubMed  CAS  Google Scholar 

  19. Wu TW, Li WW, Li H. Netrin-1 attenuates ischemic stroke-induced apoptosis. Neuroscience. 2008;156:475–82.

    Article  PubMed  CAS  Google Scholar 

  20. Nakayama M, Aihara M, Chen YN, Araie M, Tomita-Yokotani K, Iwashina T. Neuroprotective effects of flavonoids on hypoxia-, glutamate-, and oxidative stress-induced retinal ganglion cell death. Mol Vis. 2011;17:1784–93.

    PubMed  CAS  Google Scholar 

  21. Uchida S, Suzuki Y, Araie M, Kashiwagi K, Otori Y, Sakuragawa N. Factors secreted by human amniotic epithelial cells promote the survival of rat retinal ganglion cells. Neurosci Lett. 2003;341:1–4.

    Article  PubMed  CAS  Google Scholar 

  22. Kurihara T, Ozawa Y, Nagai N, Shinoda K, Noda K, Imamura Y, et al. Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina. Diabetes. 2008;57:2191–8.

    Article  PubMed  CAS  Google Scholar 

  23. Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K, et al. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia. 2010;53:971–9.

    Article  PubMed  CAS  Google Scholar 

  24. Wilkinson-Berka JL. Angiotensin and diabetic retinopathy. Int J Biochem Cell Biol. 2006;38:752–65.

    Article  PubMed  CAS  Google Scholar 

  25. Kurihara T, Ozawa Y, Shinoda K, Nagai N, Inoue M, Oike Y, et al. Neuroprotective effects of angiotensin II type 1 receptor (AT1R) blocker, telmisartan, via modulating AT1R and AT2R signaling in retinal inflammation. Invest Ophthalmol Vis Sci. 2006;47:5545–52.

    Article  PubMed  Google Scholar 

  26. Chao MV. Dependence receptors: what is the mechanism? Sci STKE. 2003. doi:10.1126/stke.2003.200.pe38.

  27. Mehlen P, Thibert C. Dependence receptors: between life and death. Cell Mol Life Sci. 2004;61:1854–66.

    Article  PubMed  CAS  Google Scholar 

  28. Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen GS, Bredesen DE. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature. 1998;395:801–4.

    Article  PubMed  CAS  Google Scholar 

  29. Shi M, Zheng MH, Liu ZR, Hu ZL, Huang Y, Chen JY, et al. DCC is specifically required for the survival of retinal ganglion and displaced amacrine cells in the developing mouse retina. Dev Biol. 2010;348:87–96.

    Article  PubMed  CAS  Google Scholar 

  30. Grenz A, Dalton JH, Bauerle JD, Badulak A, Ridyard D, Gandjeva A, et al. Partial netrin-1 deficiency aggravates acute kidney injury. PLoS One. 2011;6:e14812.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Mao Nakayama, Dr Nyu Rong, and Ms Haruna Koizumi-Mabuchi for technical assistance. The telmisartan was kindly provided by Boehringer Ingelheim, Germany. This study was supported, in part, by a Keio University Gakujishinkoushikin grant to Y.O. The angiotensin II type 1 receptor blocker was a gift from Boehringer Ingelheim, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Ozawa.

About this article

Cite this article

Ozawa, Y., Yuki, K., Yamagishi, R. et al. Renin–angiotensin system involvement in the oxidative stress-induced neurodegeneration of cultured retinal ganglion cells. Jpn J Ophthalmol 57, 126–132 (2013). https://doi.org/10.1007/s10384-012-0204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-012-0204-x

Keywords

Navigation