Skip to main content

Advertisement

Log in

Changes in choroidal thickness and optical axial length accompanying intraocular pressure increase

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To measure changes in choroidal thickness (CT), retinal thickness (RT), and axial length (AL) accompanying intraocular pressure (IOP) increase and to investigate the changes in axial eye dimensions induced by IOP increase.

Methods

Thirty-four eyes of 34 patients undergoing a diagnostic provocative test for primary angle closure (PAC). Patients with other macular diseases were excluded. Patients underwent the darkroom prone provocative test (DR-PPT) for 1 h. We measured CT and RT at the fovea by optical coherence tomography with the enhanced depth imaging method and AL with noncontact, partial coherence laser interferometry before and after the DR-PPT.

Results

There was a statistically significant increase in the mean (SD) IOP of 7.3 (9.2) mmHg and the mean (SD) AL of 0.06 (0.12) mm after the DR-PPT (P < 0.001 and P = 0.014, respectively). There was a statistically significant decrease in the mean (SD) subfoveal CT of 30.0 (36.8) μm (P < 0.001), while there was no significant change in the mean foveal RT. The change in subfoveal CT was negatively correlated with the changes in IOP (r = −0.71, P < 0.001) and AL (r = −0.54, P = 0.004).

Conclusions

In eyes suspected of having PAC, acutely increased IOP accompanies choroid thinning and corresponding elongation of the optical axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969;53:721–48.

    Article  PubMed  CAS  Google Scholar 

  2. Imamura Y, Engelbert M, Iida T, Freund KB, Yannuzzi LA. Polypoidal choroidal vasculopathy: a review. Surv Ophthalmol. 2010;55:501–15.

    Article  PubMed  Google Scholar 

  3. Chan WM, Ohji M, Lai TY, Liu DT, Tano Y, Lam DS. Choroidal neovascularisation in pathological myopia: an update in management. Br J Ophthalmol. 2005;89:1522–8.

    Article  PubMed  Google Scholar 

  4. Komatsu H, Young-Devall J, Peyman GA, Yoneya S. Choriocapillary blood propagation in normal volunteers and in patients with central serous chorioretinopathy. Br J Ophthalmol. 2010;94:289–91.

    Article  PubMed  Google Scholar 

  5. Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF. Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology. 2010;117:1792–9.

    Article  PubMed  Google Scholar 

  6. Guyer DR, Puliafito CA, Mones JM, Friedman E, Chang W, Verdooner SR. Digital indocyanine-green angiography in chorioretinal disorders. Ophthalmology. 1992;99:287–91.

    PubMed  CAS  Google Scholar 

  7. Coleman DJ, Silverman RH, Chabi A, Rondeau MJ, Shung KK, Cannata J, et al. High-resolution ultrasonic imaging of the posterior segment. Ophthalmology. 2004;111:1344–51.

    Article  PubMed  Google Scholar 

  8. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.

    Article  PubMed  Google Scholar 

  9. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci. 2010;51:2173–6.

    Article  PubMed  Google Scholar 

  10. Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M, et al. In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express. 2007;15:6121–39.

    Article  PubMed  Google Scholar 

  11. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147:811–5.

    Article  PubMed  Google Scholar 

  12. Fujiwara A, Shiragami C, Shirakata Y, Manabe S, Izumibata S, Shiraga F. Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes. Jpn J Ophthalmol. 2012;56:230–5.

    Article  PubMed  Google Scholar 

  13. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148:445–50.

    Article  PubMed  Google Scholar 

  14. Cashwell LF, Martin CA. Axial length decrease accompanying successful glaucoma filtration surgery. Ophthalmology. 1999;106:2307–11.

    Article  PubMed  CAS  Google Scholar 

  15. Leydolt C, Findl O, Drexler W. Effects of change in intraocular pressure on axial eye length and lens position. Eye (London). 2008;22:657–61.

    Article  CAS  Google Scholar 

  16. Read SA, Collins MJ. The short-term influence of exercise on axial length and intraocular pressure. Eye (London). 2011;25:767–74.

    Article  CAS  Google Scholar 

  17. Read SA, Collins MJ. Water drinking influences eye length and IOP in young healthy subjects. Exp Eye Res. 2010;91:180–5.

    Article  PubMed  CAS  Google Scholar 

  18. Uretmen O, Ates H, Andac K, Deli B. Axial length changes accompanying successful nonpenetrating glaucoma filtration surgery. Ophthalmologica. 2003;217:199–203.

    Article  PubMed  Google Scholar 

  19. Nemeth J, Horoczi Z. Changes in the ocular dimensions after trabeculectomy. Int Ophthalmol. 1992;16:355–7.

    Article  PubMed  CAS  Google Scholar 

  20. Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci. 2011;52:5121–9.

    Article  PubMed  Google Scholar 

  21. Quigley HA, Friedman DS, Congdon NG. Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma. 2003;12:167–80.

    Article  PubMed  Google Scholar 

  22. Hyams SW, Friedman Z, Neumann E. Elevated intraocular pressure in the prone position: a new provocative test for angle-closure glaucoma. Am J Ophthalmol. 1968;66:661–72.

    PubMed  CAS  Google Scholar 

  23. Neumann E, Hyams SW. Gonioscopy and anterior chamber depth in the prone-position provacative test for angle-closure glaucoma. Ophthalmologica. 1973;167:9–14.

    Article  PubMed  CAS  Google Scholar 

  24. Nonaka A, Kondo T, Kikuchi M, Yamashiro K, Fujihara M, Iwawaki T, et al. Cataract surgery for residual angle closure after peripheral laser iridotomy. Ophthalmology. 2005;112:974–9.

    Article  PubMed  Google Scholar 

  25. Sihota R, Mohan S, Dada T, Gupta V, Pandey RM, Ghate D. An evaluation of the darkroom prone provocative test in family members of primary angle closure glaucoma patients. Eye (London). 2007;21:984–9.

    Article  CAS  Google Scholar 

  26. Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol. 2010;149:18–31.

    Article  PubMed  Google Scholar 

  27. Drexler W, Findl O, Menapace R, Rainer G, Vass C, Hitzenberger CK, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol. 1998;126:524–34.

    Article  PubMed  CAS  Google Scholar 

  28. Kiel JW, van Heuven WA. Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci. 1995;36:579–85.

    PubMed  CAS  Google Scholar 

  29. Aihara M, Lindsey JD, Weinreb RN. Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res. 2003;27:355–62.

    Article  PubMed  Google Scholar 

  30. Kurimoto Y, Park M, Sakaue H, Kondo T. Changes in the anterior chamber configuration after small-incision cataract surgery with posterior chamber intraocular lens implantation. Am J Ophthalmol. 1997;124:775–80.

    PubMed  CAS  Google Scholar 

  31. Jacobi PC, Dietlein TS, Luke C, Engels B, Krieglstein GK. Primary phacoemulsification and intraocular lens implantation for acute angle-closure glaucoma. Ophthalmology. 2002;109:1597–603.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors had no financial support or financial conflict of interest. Contributions of authors: design (MH); collection (MH, FH), analysis, and interpretation (MH, FH, AO) of the data; and preparation (FH, AO, YH), review (FH, AO, YH, YK), and approval (MH, FH, AO, YH, YK) of the manuscript. All procedures conformed to the tenets of the Declaration of Helsinki, and the study design was prospectively approved by the institutional review board of Kobe City Medical Center General Hospital. The review board waived the need for written informed consent for reviewing the retrospective data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Hata.

About this article

Cite this article

Hata, M., Hirose, F., Oishi, A. et al. Changes in choroidal thickness and optical axial length accompanying intraocular pressure increase. Jpn J Ophthalmol 56, 564–568 (2012). https://doi.org/10.1007/s10384-012-0173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-012-0173-0

Keywords

Navigation