Skip to main content
Log in

Cytotoxicity assays of new artificial tears containing 2-methacryloyloxyethyl phosphorylcholine polymer for ocular surface cells

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

2-Methacryloyloxyethyl phosphorylcholine (MPC) polymer is a multifunctional agent with antiadhesive, antithrombogenetic, and strong hydrating properties. MPC polymer-containing eye drops are the first such ophthalmic product to be commercially available; they contain approximately 0.1% Lipidure-PMB (copolymer of MPC and butyl methacrylate; NOF Corporation, Tokyo, Japan). This study evaluated the cytotoxicity of this new product toward ocular surface cells.

Methods

SIRC (rabbit cornea), BCE C/D-1b (bovine cornea), RC-1 (rabbit cornea), and Chang (human conjunctiva) cell lines were tested in this study. Cell viability was measured using both the MTT assay and the neutral red test in cells treated for 10, 30, or 60 min with MPC-containing eye drops and 4 commercial ophthalmic solutions containing sodium hyaluronate (SH) at various doses (undiluted, twofold diluted, and tenfold diluted). Cell viability scores were calculated. Cell viability was analyzed using ANOVA and the Dunnett test.

Results

After treatment with the MPC eye drops, cell viability rates were maintained at over 80% irrespective of the cell lines, dilution rates, exposure times, and assays, and were similar to those of the clinically approved artificial tear products other than Hyalein 0.1%, although some significant differences were found.

Conclusions

The MPC eye drops were tolerable to ocular surface cells, and comparable to single doses of clinically approved drugs containing sodium hyaluronate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Epidemiology Subcommittee of the International Dry Eye WorkShop. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:93–107.

  2. Epidemiology Subcommittee of the International Dry Eye WorkShop. The definition and classification of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:75–92.

  3. Furrer P, Mayer JM, Gurny R. Ocular tolerance of preservatives and alternatives. Eur J Pharm Biopharm. 2002;53:263–80.

    Article  CAS  PubMed  Google Scholar 

  4. Baudoiun C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res. 2010;29:312–34.

    Article  Google Scholar 

  5. Tsubota K. Tear dynamics and dry eye. Prog Retin Eye Res. 1998;17:565–96.

    Article  CAS  PubMed  Google Scholar 

  6. Burnstein NL. The effect of topical drugs and preservatives on the tears and corneal epithelium in dry eye. Trans Ophthalmol Soc UK. 1985;104:402–9.

    Google Scholar 

  7. Khanal S, Tomlinson A, McFadyen A, Diaper C, Ramaesh K. Dry eye diagnosis. Inv Ophthalmol Vis Sci. 2008;49:1407–14.

    Article  Google Scholar 

  8. Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayashi N. Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res. 1990;24:1069–77.

    Article  CAS  PubMed  Google Scholar 

  9. Ishihara K, Takai M. Bioinspired interface for nanobiodevices based on phospholipid polymer chemistry. J R Soc Interface. 2009;6 Suppl 3:S279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishihara K. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Sci Technol Adv Mater. 2000;1:131–8.

    Article  CAS  Google Scholar 

  11. Ishihara K. New polymeric biomaterials—phospholipid polymers with a biocompatible surface. Front Med Biol Eng. 2000;10:83–95.

    Article  CAS  PubMed  Google Scholar 

  12. Iwasaki Y, Sawada S, Nakabayashi N, Khang G, Lee HB. Ishihara K. The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface. Biomaterials. 1999;20:2185–91.

    Article  CAS  PubMed  Google Scholar 

  13. Ishihara K, Ishikawa E, Iwasaki Y, Nakabayashi N. Inhibition of fibroblast cell adhesion on substrate by coating 2-methacryloyloxyethyl phosphorylcholine polymers. J Biomater Sci Polymer Ed. 1999;10:1047–61.

    Article  CAS  Google Scholar 

  14. Ye SH, Watanabe J, Iwasaki Y, Ishihara K. Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials. 2003;24:4143–52.

    Article  CAS  PubMed  Google Scholar 

  15. Sawada S, Sakaki S, Iwasaki Y, Nakabayashi N. Ishihara K. Suppression of the inflammatory response from adherent cells on phospholipid polymers. J Biomed Mater Res A. 2003;64:411–6.

    Article  PubMed  Google Scholar 

  16. Iwasaki Y, Sawada S, Ishihara K, Khang G, Lee HB. Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend. Biomaterials. 2002;23:3897–903.

    Article  CAS  PubMed  Google Scholar 

  17. Goda T, Matsuno R, Konno T, Takai M, Ishihara K. Protein adsorption resistance and oxygen permeability of chemically crosslinked phospholipid polymer hydrogel for ophthalmologic biomaterials. J Biomed Mater Res B Appl Biomater. 2009;89:184–90.

    Article  PubMed  Google Scholar 

  18. Goda T, Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Rev Med Devices. 2006;3:167–74.

    Article  CAS  PubMed  Google Scholar 

  19. Okajima Y, Saika S, Sawa M. Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior. J Cataract Refract Surg. 2006;32:666–71.

    Article  PubMed  Google Scholar 

  20. Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, et al. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials. 2009;30:1551–9.

    Article  CAS  PubMed  Google Scholar 

  21. Polack FM, McNiece MT. The treatment of dry eye with Na hyaluronate (Healon). Cornea. 1982;1:133–6.

    Google Scholar 

  22. Yokoi N, Komuro A, Nishida K, Kinoshita S. Effectiveness of hyaluronan on corneal epithelial barrier function in dry eye. Br J Ophthalmol. 1997;81:533–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakamura M, Sato N, Chikama TI, Hasegawa Y, Nishida T. Hyaluronan facilitates corneal epithelial wound healing in diabetic rats. Exp Eye Res. 1997;64:1043–50.

    Article  CAS  PubMed  Google Scholar 

  24. Johnson ME, Murphy PJ, Boulton M. Effectiveness of sodium hyaluronate eyedrops in the treatment of dry eye. Graefes Arch Clin Exp Ophthalmol. 2006;244:109–12.

    Article  CAS  PubMed  Google Scholar 

  25. Troiano P, Monaco G. Effect of hypotonic 0.4% SH drops in dry eye patients: a cross-over study. Cornea. 2008;27:1126–30.

    Article  PubMed  Google Scholar 

  26. Debbasch C, De La Salle SB, Brignole F, Rat P, Warnet JM, Baudouin C. Cytoprotective effects of SH and Carbomer 934P in ocular surface epithelial cells. Invest Ophthalmol Vis Sci. 2002;43:3409–15.

    PubMed  Google Scholar 

  27. Burstein NL, Klyce SD. Electrophysiologic and morphologic effects of ophthalmic preparations on rabbit cornea epithelium. Invest Ophthalmol Vis Sci. 1977;16:899–911.

    CAS  PubMed  Google Scholar 

  28. De Saint Jean M, Brignole F, Bringuier AF, Bauchet A, Feldmann G, Baudouin C. Effects of benzalkonium chloride on growth and viability of Chang conjunctival cells. Invest Ophthalmol Vis Sci. 1999;40:619–30.

    PubMed  Google Scholar 

  29. Pfister RR, Burstein NL. The effects of ophthalmic drugs, vehicles, and preservatives on corneal epithelium: a scanning electron microscope study. Invest Ophthalmol Vis Sci. 1976;15:246–59.

    CAS  Google Scholar 

  30. Gasset AR, Ishii Y. Cytotoxicity of chlorhexidine. Can J Ophthalmol. 1975;10:98–100.

    CAS  PubMed  Google Scholar 

  31. Müller G, Kramer A. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother. 2008;61:1281–7.

    Article  PubMed  Google Scholar 

  32. Larkin DF, Kilvington S, Dart JK. Treatment of Acanthamoeba keratitis with polyhexamethylene biguanide. Ophthalmology. 1992;99:185–91.

    Article  CAS  PubMed  Google Scholar 

  33. Young G, Keir N, Hunt C, Woods CA. Clinical evaluation of long-term users of two contact lens care preservative systems. Eye. 2009;35:50–8.

    Google Scholar 

  34. Hubbard SA. Comparative toxicology of borates. Biol Trace Elem Res. 1998;66:343–57.

    Article  CAS  PubMed  Google Scholar 

  35. van Rij G, Beekhuis WH, Eggink CA, Geerards AJ, Remeijer L, Pels EL. Toxic keratopathy due to the accidental use of chlorhexidine, cetrimide and cialit. Doc Ophthalmol. 1995;90:7–14.

    Article  PubMed  Google Scholar 

  36. Anders N, Wollensak J. Inadvertent use of chlorhexidine instead of balanced salt solution for intraocular irrigation. J Cataract Refract Surg. 1997;23:959–62.

    Article  CAS  PubMed  Google Scholar 

  37. Liu H, Routley I, Teichmann KD. Toxic endothelial cell destruction from intraocular benzalkonium chloride. J Cataract Refract Surg. 2001;27:1746–50.

    Article  CAS  PubMed  Google Scholar 

  38. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  PubMed  Google Scholar 

  39. Denizot F, Lang R. Rapid colorimetric assay for cell growth and viability: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89:271–7.

    Article  CAS  PubMed  Google Scholar 

  40. Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985;24:119–24.

    Article  CAS  PubMed  Google Scholar 

  41. Ayaki M, Iwasawa A, Yaguchi S, Koide R. Preserved and unpreserved 12 anti-allergic ophthalmic solutions and ocular surface toxicity: in vitro assessment in four cultured corneal and conjunctival epithelial cell lines. Biocontrol Sci. 2010;15:143–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ayaki M, Iwasawa A, Inoue Y. Toxicity of antiglaucoma drugs with and without benzalkonium chloride to cultured human corneal endothelial cells. Clin Ophthalmology. 2010;4:1217–22.

    Article  CAS  Google Scholar 

  43. Kawazu K, Yamada K, Nakamura M, Ota A. Characterization of cyclosporin A transport in cultured rabbit corneal epithelial cells: P-glycoprotein transport activity and binding to cyclophilin. Invest Ophthalmol Vis Sci. 1999;40:1738–44.

    CAS  PubMed  Google Scholar 

  44. Xiang CD, Batugo M, Gale DC, Zhang T, Ye J, Li C, et al. Characterization of human corneal epithelial cell model as a surrogate for corneal permeability assessment: metabolism and transport. Drug Metab Dispos. 2009;37:992–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NOF Corporation generously gifted the MPC-containing eye drops for experimental use. Inter-Biotec performed professional native-English editing for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Ayaki.

About this article

Cite this article

Ayaki, M., Iwasawa, A. & Niwano, Y. Cytotoxicity assays of new artificial tears containing 2-methacryloyloxyethyl phosphorylcholine polymer for ocular surface cells. Jpn J Ophthalmol 55, 541–546 (2011). https://doi.org/10.1007/s10384-011-0073-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-011-0073-8

Keywords

Navigation