Skip to main content

Advertisement

Log in

Decrease in intraocular pressure following orthokeratology measured with a noncontact tonometer

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Orthokeratology for correction of myopia reduces corneal power by flattening corneal curvature and thinning central corneal thickness (CCT). Measurement of intraocular pressure (IOP) with a noncontact tonometer is known to be affected by CCT and corneal curvature. We investigated the influence of orthokeratology on such measurements of IOP.

Methods

This was a prospective, interventional case series derived from a clinical trial of orthokeratology lenses in two hospitals. Both eyes of 45 subjects were fitted with reverse-geometry lenses, worn for more than 4 h overnight for 52 weeks. Uncorrected visual acuity, refraction, IOP (with a noncontact tonometer), CCT, and corneal curvature were measured.

Results

Uncorrected visual acuity, spherical equivalent value, IOP, CCT, and the radius of corneal curvature were 0.93 ± 0.27, −2.87 ± 1.05 D, 13.5 ± 2.5 mmHg, 536.2 ± 39.6 μm, and 7.88 ± 0.25 mm, respectively, before orthokeratology, and 0.17 ± 0.34, −1.05 ± 1.18 D, 12.4 ± 2.7 mmHg, 528.6 ± 40.8 μm, and 8.10 ± 0.31 mm at 52 weeks after treatment. The changes in all parameters were significant, and the change in IOP was significantly correlated with that in CCT at 24 weeks and thereafter.

Conclusions

Orthokeratology for myopia leads to a decrease in IOP measured with a noncontact tonometer, likely as a result of the associated decrease in CCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Damji KF, Munger R. Influence of central corneal thickness on applanation intraocular pressure. J Glaucoma. 2000;9:205–7.

    Article  CAS  PubMed  Google Scholar 

  2. Matsumoto T, Makino H, Uozato H, Saishin M, Miyamoto S. The influence of corneal thickness and curvature on the difference between intraocular pressure measurements obtained with a non-contact tonometer and those with a Goldmann applanation tonometer. Jpn J Ophthalmol. 2000;44:691.

    Article  CAS  PubMed  Google Scholar 

  3. Goldmann H, Schmidt T. Applanation tonometry. Ophthalmologica. 1957;134:221–42.

    Article  CAS  PubMed  Google Scholar 

  4. Purslow PP, Karwatowski WS. Ocular elasticity. Is engineering stiffness a more useful characterization parameter than ocular rigidity? Ophthalmology. 1996;103:1686–92.

    Article  CAS  PubMed  Google Scholar 

  5. Chihara E. Assessment of true intraocular pressure: the gap between theory and practical data. Surv Ophthalmol. 2008;53:203–18.

    Article  PubMed  Google Scholar 

  6. Swarbrick HA. Orthokeratology review and update. Clin Exp Optom. 2006;89:124–43.

    Article  PubMed  Google Scholar 

  7. Hiraoka T, Matsumoto Y, Okamoto F, Yamaguchi T, Hirohara Y, Mihashi T, et al. Corneal higher-order aberrations induced by overnight orthokeratology. Am J Ophthalmol. 2005;139:429–36.

    Article  PubMed  Google Scholar 

  8. Chen D, Lam AK, Cho P. A pilot study on the corneal biomechanical changes in short-term orthokeratology. Ophthalmic Physiol Opt. 2009;29:464–71.

    Article  PubMed  Google Scholar 

  9. Cheung SW, Cho P, Chan B. Astigmatic changes in orthokeratology. Optom Vis Sci. 2009;86:1352–8.

    Article  PubMed  Google Scholar 

  10. Choo JD, Caroline PJ, Harlin DD, Papas EB, Holden BA. Morphologic changes in cat epithelium following continuous wear of orthokeratology lenses: a pilot study. Contact Lens Anterior Eye. 2008;31:29–37.

    Article  PubMed  Google Scholar 

  11. Stillitano IG, Chalita MR, Schor P, Maidana E, Lui MM, Lipener C, et al. Corneal changes and wavefront analysis after orthokeratology fitting test. Am J Ophthalmol. 2007;144:378–86.

    Article  PubMed  Google Scholar 

  12. Tsukiyama J, Miyamoto Y, Higaki S, Fukuda M, Shimomura Y. Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology. Eye Contact Lens. 2008;34:17–20.

    Article  PubMed  Google Scholar 

  13. Alharbi A, Swarbrick HA. The effects of overnight orthokeratology lens wear on corneal thickness. Invest Ophthalmol Vis Sci. 2003;44:2518–23.

    Article  PubMed  Google Scholar 

  14. Reinstein DZ, Gobbe M, Archer TJ, Couch D, Bloom B. Epithelial, stromal, and corneal pachymetry changes during orthokeratology. Optom Vis Sci. 2009;86:E1006–14.

    Article  PubMed  Google Scholar 

  15. Cheah PS, Norhani M, Bariah MA, Myint M, Lye MS, Azian AL. Histomorphometric profile of the corneal response to short-term reverse-geometry orthokeratology lens wear in primate corneas: a pilot study. Cornea. 2008;27:461–70.

    Article  PubMed  Google Scholar 

  16. Alharbi A, La Hood D, Swarbrick HA. Overnight orthokeratology lens wear can inhibit the central stromal edema response. Invest Ophthalmol Vis Sci. 2005;46:2334–40.

    Article  PubMed  Google Scholar 

  17. Barr JT, Rah MJ, Jackson JM, Jones LA. Orthokeratology and corneal refractive therapy: a review and recent findings. Eye Contact Lens. 2003;29:S49–53; discussion S7–9, S192–4.

    Article  PubMed  Google Scholar 

  18. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25:381–91.

    Article  PubMed  Google Scholar 

  19. Fournier AV, Podtetenev M, Lemire J, Thompson P, Duchesne R, Perreault C, et al. Intraocular pressure change measured by Goldmann tonometry after laser in situ keratomileusis. J Cataract Refract Surg. 1998;24:905–10.

    Article  CAS  PubMed  Google Scholar 

  20. Cronemberger S, Guimaraes CS, Calixto N, Calixto JMF. Intraocular pressure and ocular rigidity after LASIK. Arq Bras Oftalmol. 2009;72:439–43.

    Article  PubMed  Google Scholar 

  21. Siganos DS, Papastergiou GI, Moedas C. Assessment of the Pascal dynamic contour tonometer in monitoring intraocular pressure in unoperated eyes and eyes after LASIK. J Cataract Refract Surg. 2004;30:746–51.

    Article  PubMed  Google Scholar 

  22. Hsu SY, Chang MS, Lee CJ. Intraocular pressure assessment in both eyes of the same patient after laser in situ keratomileusis. J Cataract Refract Surg. 2009;35:76–82.

    Article  PubMed  Google Scholar 

  23. Yang CC, Wang IJ, Chang YC, Lin LL, Chen TH. A predictive model for postoperative intraocular pressure among patients undergoing laser in situ keratomileusis (LASIK). Am J Ophthalmol. 2006;141:530–6.

    Article  PubMed  Google Scholar 

  24. Climenhaga H, Plucinska H. Comparison of the Pulsair noncontact tonometer and the Goldmann applanation tonometer. Can J Ophthalmol. 1989;24:7–9.

    CAS  PubMed  Google Scholar 

  25. Sorensen PN. The noncontact tonometer. Clinical evaluation on normal and diseased eyes. Acta Ophthalmol (Copenh). 1975;53:513–21.

    Article  CAS  Google Scholar 

  26. Ko YC, Liu CJ, Hsu WM. Varying effects of corneal thickness on intraocular pressure measurements with different tonometers. Eye (Lond). 2005;19:327–32.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant (22791663) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoji Yanai.

About this article

Cite this article

Ishida, Y., Yanai, R., Sagara, T. et al. Decrease in intraocular pressure following orthokeratology measured with a noncontact tonometer. Jpn J Ophthalmol 55, 190–195 (2011). https://doi.org/10.1007/s10384-011-0018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-011-0018-2

Keywords

Navigation