Skip to main content

Advertisement

Log in

Temporal and spatial characteristics of cone degeneration in RCS rats

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The temporal and spatial characteristics of cone degeneration in the Royal College of Surgeons (RCS) rat were studied to provide information for treatment strategies of retinitis pigmentosa.

Methods

Nonpigmented dystrophic RCS rats (RCS) and pigmented nondystrophic RCS rats (controls) were used. Cone processes were visualized with peanut agglutinin (PNA).

Results

Cone development appears to have been completed by postnatal day 21 (P21) in both the RCS and control rats. Signs of cone degeneration were obvious by P30, with shorter outer segments (OSs) and enlarged inner segments (ISs). At that time, 81.7% of the cones retained stained ISs. The rate of IS density decline was slower in the peripheral, nasal, and superior retina, and only 43.6% of the cones with ISs were present at P45. By P60, PNA-labeled cone ISs were distorted and restricted to the peripheral retina, and by P90, few cone pedicles were detected.

Conclusions

Our findings indicate that therapeutic strategies aimed at rescuing cones in the degenerating retina should be applied before P21 and no later than P45 while substantial numbers of cones retain their ISs. Either the middle or peripheral regions of the nasal and superior retina are the best locations for transplantation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003;22:607–655.

    Article  PubMed  Google Scholar 

  2. Lund RD, Kwan AS, Keegan DJ, Sauve Y, Coffey PJ, Lawrence JM. Cell transplantation as a treatment for retinal disease. Prog Retin Eye Res 2001;20:415–449.

    Article  PubMed  CAS  Google Scholar 

  3. Aramant RB, Seiler MJ. Progress in retinal sheet transplantation. Prog Retin Eye Res 2004;23:475–494.

    Article  PubMed  Google Scholar 

  4. Pinilla I, Cuenca N, Sauve Y, Wang S, Lund RD. Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat. Exp Eye Res 2007;85:381–392.

    Article  PubMed  CAS  Google Scholar 

  5. Wojciechowski AB, Englund U, Lundberg C, Wictorin K, Warfvinge K. Subretinal transplantation of brain-derived precursor cells to young RCS rats promotes photoreceptor cell survival. Exp Eye Res 2002;75:23–37.

    Article  PubMed  CAS  Google Scholar 

  6. Rosenfeld PJ, Cowley GS, McGee TL, Sandberg MA, Berson EL, Dryja TP. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nat Genet 1992;1:209–213.

    Article  PubMed  CAS  Google Scholar 

  7. McLaughlin ME, Sandberg MA, Berson EL, Dryja TP. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet 1993;4:130–134.

    Article  PubMed  CAS  Google Scholar 

  8. Girman SV, Wang S, Lund RD. Time course of deterioration of rod and cone function in RCS rat and the effects of subretinal cell grafting: a light- and dark-adaptation study. Vision Res 2005;45:343–354.

    Article  PubMed  CAS  Google Scholar 

  9. LaVail MM. Legacy of the RCS rat: impact of a seminal study on retinal cell biology and retinal degenerative diseases. Prog Brain Res 2001;131:617–627.

    Article  PubMed  CAS  Google Scholar 

  10. Huang XY, Yin ZQ, Tan XL. Characteristics of retinal stem cells from rat optic cup at embryonic day 12.5 (tailbud stage). Cell Tissue Res 2008;333:381–393.

    Article  PubMed  Google Scholar 

  11. Liu DN, Yin ZQ, Wu N, Wang YH, Chen LF. Rat bone marrow stromal cells express retinal phenotypic markers following different induction protocols. Ophthalmic Res 2009;41:186–193.

    Article  PubMed  CAS  Google Scholar 

  12. LaVail MM, Sidman M, Rausin R, Sidman RL. Discrimination of light intensity by rats with inherited retinal degeneration: a behavioral and cytological study. Vision Res 1974;14:693–702.

    Article  PubMed  CAS  Google Scholar 

  13. Cicerone CM, Green DG, Fisher LJ. Cone inputs to ganglion cells in hereditary retinal degeneration. Science 1979;203:1113–1115.

    Article  PubMed  CAS  Google Scholar 

  14. Cotter JR, Noell WK. Ultrastructure of remnant photoreceptors in advanced hereditary retinal degeneration. Invest Ophthalmol Vis Sci 1984;25:1366–1375.

    PubMed  CAS  Google Scholar 

  15. Sauve Y, Pinilla I, Lund RD. Partial preservation of rod and cone ERG function following subretinal injection of ARPE-19 cells in RCS rats. Vision Res 2006;46:1459–1472.

    Article  PubMed  CAS  Google Scholar 

  16. Li L, Turner JE. Optimal conditions for long-term photoreceptor cell rescue in RCS rats: the necessity for healthy RPE transplants. Exp Eye Res 1991;52:669–679.

    Article  PubMed  CAS  Google Scholar 

  17. Krishnamoorthy V, Jain V, Cherukuri P, Baloni S, Dhingra NK. Intravitreal injection of fluorochrome-conjugated peanut agglutinin results in specific and reversible labeling of mammalian cones in vivo. Invest Ophthalmol Vis Sci 2008;49:2643–2650.

    Article  PubMed  Google Scholar 

  18. Li A, Lane WS, Johnson LV, Chader GJ, Tombran-Tink J. Neuronspecific enolase: a neuronal survival factor in the retinal extracellular matrix? J Neurosci 1995;15:385–393.

    PubMed  CAS  Google Scholar 

  19. Johnson LV, Hageman GS. Structural and compositional analyses of isolated cone matrix sheaths. Invest Ophthalmol Vis Sci 1991;32:1951–1957.

    PubMed  CAS  Google Scholar 

  20. LaVail MM, Sidman RL, Gerhardt CO. Congenic strains of RCS rats with inherited retinal dystrophy. J Hered 1975;66:242–244.

    PubMed  CAS  Google Scholar 

  21. Dowling JE, Sidman RL. Inherited retinal dystrophy in the rat. J Cell Biol 1962;14:73–109.

    Article  PubMed  CAS  Google Scholar 

  22. Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM. Timing and topography of cell genesis in the rat retina. J Comp Neurol 2004;474:304–324.

    Article  PubMed  Google Scholar 

  23. Blanks JC, Bok D. An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina. J Comp Neurol 1977;174:317–327.

    Article  PubMed  CAS  Google Scholar 

  24. Rich KA, Zhan Y, Blanks JC. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J Comp Neurol 1997;388:47–63.

    Article  PubMed  CAS  Google Scholar 

  25. Rubin GR, Kraft TW. Flicker assessment of rod and cone function in a model of retinal degeneration. Doc Ophthalmol 2007;115:165–172.

    Article  PubMed  Google Scholar 

  26. Lin B, Masland RH, Strettoi E. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res 2009;88:589–599.

    Article  PubMed  CAS  Google Scholar 

  27. Nguyen-Legros J, Hicks D. Renewal of photoreceptor outer segments and their phagocytosis by the retinal pigment epithelium. Int Rev Cytol 2000;196:245–313.

    Article  PubMed  CAS  Google Scholar 

  28. Winkler BS. An hypothesis to account for the renewal of outer segments in rod and cone photoreceptor cells: renewal as a surrogate antioxidant. Invest Ophthalmol Vis Sci 2008;49:3259–3261.

    Article  PubMed  Google Scholar 

  29. Sakai T, Calderone JB, Lewis GP, Linberg KA, Fisher SK, Jacobs GH. Cone photoreceptor recovery after experimental detachment and reattachment: an immunocytochemical, morphological, and electrophysiological study. Invest Ophthalmol Vis Sci 2003;44: 416–425.

    Article  PubMed  Google Scholar 

  30. Mohand-Said S, Hicks D, Dreyfus H, Sahel JA. Selective transplantation of rods delays cone loss in a retinitis pigmentosa model. Arch Ophthalmol 2000;118:807–811.

    PubMed  CAS  Google Scholar 

  31. Leveillard T, Mohand-Said S, Lorentz O, et al. Identification and characterization of rod-derived cone viability factor. Nat Genet 2004;36:755–759.

    Article  PubMed  CAS  Google Scholar 

  32. Mohand-Said S, Hicks D, Simonutti M, et al. Photoreceptor transplants increase host cone survival in the retinal degeneration (rd) mouse. Ophthalmic Res 1997;29:290–297.

    Article  PubMed  CAS  Google Scholar 

  33. Komeima K, Rogers BS, Campochiaro PA. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa. J Cell Physiol 2007;213:809–815.

    Article  PubMed  CAS  Google Scholar 

  34. Pinilla I, Lund RD, Sauve Y. Cone function studied with flicker electroretinogram during progressive retinal degeneration in RCS rats. Exp Eye Res 2005;80:51–59.

    Article  PubMed  CAS  Google Scholar 

  35. Milam AH, Li ZY, Fariss RN. Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 1998;17:175–205.

    Article  PubMed  CAS  Google Scholar 

  36. Fariss RN, Li ZY, Milam AH. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am J Ophthalmol 2000;129:215–223.

    Article  PubMed  CAS  Google Scholar 

  37. Li ZY, Jacobson SG, Milam AH. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry. Exp Eye Res 1994;58:397–408.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Qin Yin.

About this article

Cite this article

Huang, Y.M., Yin, Z.Q., Liu, K. et al. Temporal and spatial characteristics of cone degeneration in RCS rats. Jpn J Ophthalmol 55, 155–162 (2011). https://doi.org/10.1007/s10384-010-0908-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-010-0908-8

Keywords

Navigation