Skip to main content

Advertisement

Log in

Differential Effects of Experimental Retinal Detachment on S- and M/L-Cones in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Retinal detachment is a vision-threatening condition, which occurs when the neurosensory retina is separated from its blood supply. The main purpose of this study was to examine the effect of experimental retinal detachment in rats on cone photoreceptors. Retinal detachment was induced in the eyes of rats via subretinal injection of sodium hyaluronate. Experimental detachment caused a rapid, sustained loss of short (S)- and medium/long (M/L)-wavelength cone opsins. Importantly, S-opsin+ cones were affected earlier than M/L-opsin+ cones and were affected to a greater extent than M/L-opsin+ cones throughout the duration of detachment. In comparison, to cone opsins, reductions in other cone markers—peanut agglutinin PNA and cone arrestin—were substantially less marked. These data suggest that loss of cone opsins does not reflect cone degeneration and may rather indicate prolonged downregulation of specific proteins in affected cones. This conclusion is supported by the lack of TUNEL+- cone arrestin+ double-labelled cells at the time point of greatest rod photoreceptor cell death, together with the partial recovery of cone arrestin+ cell numbers over time. Analysis of retinas that had naturally re-attached reinforced the deduction that few cones die following detachment, but also highlighted that prolonged detachment leads to deconstruction of cone segments that may not be readily reversible. Survival and functional recovery of cones following surgery for retinal detachment is vital for successful recovery of vision. The data suggest that experimental detachment in rats may offer a useful approach to model the response of S-cones to retinal detachment in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets created during the current study are available from the corresponding author on reasonable request. No publicly available data was used in the manuscript.

Code Availability

Not applicable.

References

  1. Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20(2):175–208

    Article  CAS  PubMed  Google Scholar 

  2. Mitry D, Charteris DG, Fleck BW, Campbell H, Singh J (2010) The epidemiology of rhegmatogenous retinal detachment: geographical variation and clinical associations. Br J Ophthalmol 94(6):678–684

    Article  CAS  PubMed  Google Scholar 

  3. Pastor JC, Fernandez I, Rodriguez de la Rua E, Coco R, Sanabria-Ruiz Colmenares MR, Sanchez-Chicharro D, Martinho R, Ruiz Moreno JM, Garcia Arumi J, Suarez de Figueroa M, Giraldo A, Manzanas L (2008) Surgical outcomes for primary rhegmatogenous retinal detachments in phakic and pseudophakic patients: the Retina 1 Project–report 2. Br J Ophthalmol 92(3):378–382

    Article  CAS  PubMed  Google Scholar 

  4. Burton TC (1982) Recovery of visual acuity after retinal detachment involving the macula. Trans Am Ophthalmol Soc 80:475–497

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Williamson TH, Lee EJ, Shunmugam M (2014) Characteristics of rhegmatogenous retinal detachment and their relationship to success rates of surgery. Retina 34(7):1421–1427

    Article  PubMed  Google Scholar 

  6. Williamson TH, Shunmugam M, Rodrigues I, Dogramaci M, Lee E (2013) Characteristics of rhegmatogenous retinal detachment and their relationship to visual outcome. Eye (Lond) 27(9):1063–1069

    Article  CAS  Google Scholar 

  7. Greven MA, Leng T, Silva RA, Leung LB, Karth PA, Moshfeghi DM, Sanislo SR, Schachar IH (2019) Reductions in final visual acuity occur even within the first 3 days after a macula-off retinal detachment. Br J Ophthalmol 103(10):1503–1506

    Article  PubMed  Google Scholar 

  8. van Bussel EM, van der Valk R, Bijlsma WR, La Heij EC (2014) Impact of duration of macula-off retinal detachment on visual outcome: a systematic review and meta-analysis of literature. Retina 34(10):1917–1925

    Article  PubMed  Google Scholar 

  9. Reumueller A, Wassermann L, Salas M, Karantonis MG, Sacu S, Georgopoulos M, Drexler W, Pircher M, Pollreisz A, Schmidt-Erfurth U (2020) Morphologic and functional assessment of photoreceptors after macula-off retinal detachment with adaptive-optics OCT and microperimetry. Am J Ophthalmol 214:72–85

    Article  PubMed  Google Scholar 

  10. Sakai T, Iida K, Tanaka Y, Kohzaki K, Kitahara K (2005) Evaluation of S-cone sensitivity in reattached macula following macula-off retinal detachment surgery. Jpn J Ophthalmol 49(4):301–305

    Article  PubMed  Google Scholar 

  11. Ueda M, Adachi-Usami E (1992) Assessment of central visual function after successful retinal detachment surgery by pattern visual evoked cortical potentials. Br J Ophthalmol 76(8):482–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamamoto S, Hayashi M, Takeuchi S (1998) Cone electroretinograms in response to color stimuli after successful retinal detachment surgery. Jpn J Ophthalmol 42(4):314–317

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi M, Yamamoto S (2001) Changes of cone electroretinograms to colour flash stimuli after successful retinal detachment surgery. Br J Ophthalmol 85(4):410–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chisholm IA, McClure E, Foulds WS (1975) Functional recovery of the retina after retinal detachment. Trans Ophthalmol Soc U K 95(1):167–172

    CAS  PubMed  Google Scholar 

  15. Nork TM, Millecchia LL, Strickland BD, Linberg JV, Chao GM (1995) Selective loss of blue cones and rods in human retinal detachment. Arch Ophthalmol 113(8):1066–1073

    Article  CAS  PubMed  Google Scholar 

  16. Wickham L, Lewis GP, Charteris DG, Fisher SK (2013) Cellular effects of detachment and reattachment on the neural retina and the retinal pigment epithelium. In: Ryan SJ (ed) Retina, 5th edn. Elsevier, Philadelphia, pp 605–607

    Chapter  Google Scholar 

  17. Rex TS, Fariss RN, Lewis GP, Linberg KA, Sokal I, Fisher SK (2002) A survey of molecular expression by photoreceptors after experimental retinal detachment. Invest Ophthalmol Vis Sci 43(4):1234–1247

    PubMed  Google Scholar 

  18. Linberg KA, Lewis GP, Shaaw C, Rex TS, Fisher SK (2001) Distribution of S- and M-cones in normal and experimentally detached cat retina. J Comp Neurol 430(3):343–356

    Article  CAS  PubMed  Google Scholar 

  19. Rex TS, Lewis GP, Geller SF, Fisher SK (2002) Differential expression of cone opsin mRNA levels following experimental retinal detachment and reattachment. Mol Vis 8:114–118

    PubMed  Google Scholar 

  20. Chidlow G, Daymon M, Wood JP, Casson RJ (2011) Localization of a wide-ranging panel of antigens in the rat retina by immunohistochemistry: Comparison of Davidson’s Solution and Formalin as Fixatives. J Histochem Cytochem 59(10):884–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chidlow G, Wood JP, Knoops B, Casson RJ (2016) Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct 221(8):3903–3925

    Article  CAS  PubMed  Google Scholar 

  22. Narayan DS, Ao J, Wood JPM, Casson RJ, Chidlow G (2019) Spatio-temporal characterization of S- and M/L-cone degeneration in the Rd1 mouse model of retinitis pigmentosa. BMC Neurosci 20(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chidlow G, Wood JP, Casson RJ (2014) Expression of inducible heat shock proteins hsp27 and hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury. PLoS One 9 (12):e114838.

  24. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  CAS  PubMed  Google Scholar 

  25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29 (9):e45.

  26. Ortin-Martinez A, Jimenez-Lopez M, Nadal-Nicolas FM, Salinas-Navarro M, Alarcon-Martinez L, Sauve Y, Villegas-Perez MP, Vidal-Sanz M, Agudo-Barriuso M (2010) Automated quantification and topographical distribution of the whole population of S- and L-cones in adult albino and pigmented rats. Invest Ophthalmol Vis Sci 51(6):3171–3183

    Article  PubMed  Google Scholar 

  27. Johnson LV, Hageman GS, Blanks JC (1986) Interphotoreceptor matrix domains ensheath vertebrate cone photoreceptor cells. Invest Ophthalmol Vis Sci 27(2):129–135

    CAS  PubMed  Google Scholar 

  28. Hisatomi T, Sakamoto T, Goto Y, Yamanaka I, Oshima Y, Hata Y, Ishibashi T, Inomata H, Susin SA, Kroemer G (2002) Critical role of photoreceptor apoptosis in functional damage after retinal detachment. Curr Eye Res 24(3):161–172

    Article  PubMed  Google Scholar 

  29. Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG (2013) Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 37:114–140

    Article  PubMed  Google Scholar 

  30. Nork TM (2000) Acquired color vision loss and a possible mechanism of ganglion cell death in glaucoma. Trans Am Ophthalmol Soc 98:331–363

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sakai T, Calderone JB, Lewis GP, Linberg KA, Fisher SK, Jacobs GH (2003) Cone photoreceptor recovery after experimental detachment and reattachment: an immunocytochemical, morphological, and electrophysiological study. Invest Ophthalmol Vis Sci 44(1):416–425

    Article  PubMed  Google Scholar 

  32. Jacobs GH, Calderone JB, Sakai T, Lewis GP, Fisher SK (2002) An animal model for studying cone function in retinal detachment. Doc Ophthalmol 104(1):119–132

    Article  PubMed  Google Scholar 

  33. Ahnelt PK, Kolb H, Pflug R (1987) Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. J Comp Neurol 255(1):18–34

    Article  CAS  PubMed  Google Scholar 

  34. Harwerth RS, Sperlng HG (1971) Prolonged color blindness induced by intense spectral lights in rhesus monkeys. Science 174(4008):520–523

    Article  CAS  PubMed  Google Scholar 

  35. Greenstein VC, Hood DC, Ritch R, Steinberger D, Carr RE (1989) S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Invest Ophthalmol Vis Sci 30(8):1732–1737

    CAS  PubMed  Google Scholar 

  36. Swanson WH, Birch DG, Anderson JL (1993) S-cone function in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 34(11):3045–3055

    CAS  PubMed  Google Scholar 

  37. Cho NC, Poulsen GL, Ver Hoeve JN, Nork TM (2000) Selective loss of S-cones in diabetic retinopathy. Arch Ophthalmol 118(10):1393–1400

    Article  CAS  PubMed  Google Scholar 

  38. Heron G, Adams AJ, Husted R (1988) Central visual fields for short wavelength sensitive pathways in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 29(1):64–72

    CAS  PubMed  Google Scholar 

  39. Haegerstrom-Portnoy G (1988) Short-wavelength-sensitive-cone sensitivity loss with aging: a protective role for macular pigment? J Opt Soc Am A 5(12):2140–2144

    Article  CAS  PubMed  Google Scholar 

  40. Kam JH, Weinrich TW, Sangha H, Powner MB, Fosbury R, Jeffery G (2019) Mitochondrial absorption of short wavelength light drives primate blue retinal cones into glycolysis which may increase their pace of aging. Vis Neurosci 36:E007

    Article  PubMed  Google Scholar 

  41. Mervin K, Valter K, Maslim J, Lewis G, Fisher S, Stone J (1999) Limiting photoreceptor death and deconstruction during experimental retinal detachment: the value of oxygen supplementation. Am J Ophthalmol 128(2):155–164

    Article  CAS  PubMed  Google Scholar 

  42. Erickson PA, Fisher SK, Anderson DH, Stern WH, Borgula GA (1983) Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Invest Ophthalmol Vis Sci 24(7):927–942

    CAS  PubMed  Google Scholar 

  43. Chong DY, Boehlke CS, Zheng QD, Zhang L, Han Y, Zacks DN (2008) Interleukin-6 as a photoreceptor neuroprotectant in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 49(7):3193–3200

    Article  PubMed  Google Scholar 

  44. Lewis GP, Charteris DG, Sethi CS, Leitner WP, Linberg KA, Fisher SK (2002) The ability of rapid retinal reattachment to stop or reverse the cellular and molecular events initiated by detachment. Invest Ophthalmol Vis Sci 43(7):2412–2420

    PubMed  Google Scholar 

  45. Herrmann R, Lobanova ES, Hammond T, Kessler C, Burns ME, Frishman LJ, Arshavsky VY (2010) Phosducin regulates transmission at the photoreceptor-to-ON-bipolar cell synapse. J Neurosci 30(9):3239–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Geller SF, Lewis GP, Fisher SK (2001) FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Muller and RPE cells. Invest Ophthalmol Vis Sci 42(6):1363–1369

    CAS  PubMed  Google Scholar 

  47. Fisher SK, Lewis GP (2003) Muller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Res 43(8):887–897

    Article  PubMed  Google Scholar 

  48. Fisher SK, Lewis GP, Linberg KA, Verardo MR (2005) Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res 24(3):395–431

    Article  PubMed  Google Scholar 

  49. Lewis GP, Erickson PA, Guerin CJ, Anderson DH, Fisher SK (1989) Changes in the expression of specific Muller cell proteins during long-term retinal detachment. Exp Eye Res 49(1):93–111

    Article  CAS  PubMed  Google Scholar 

  50. Linberg KA, Sakai T, Lewis GP, Fisher SK (2002) Experimental retinal detachment in the cone-dominant ground squirrel retina: morphology and basic immunocytochemistry. Vis Neurosci 19(5):603–619

    Article  PubMed  Google Scholar 

  51. Verardo MR, Lewis GP, Takeda M, Linberg KA, Byun J, Luna G, Wilhelmsson U, Pekny M, Chen DF, Fisher SK (2008) Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin. Invest Ophthalmol Vis Sci 49(8):3659–3665

    Article  PubMed  Google Scholar 

  52. Wen R, Cheng T, Song Y, Matthes MT, Yasumura D, LaVail MM, Steinberg RH (1998) Continuous exposure to bright light upregulates bFGF and CNTF expression in the rat retina. Curr Eye Res 17(5):494–500

    Article  CAS  PubMed  Google Scholar 

  53. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424

    Article  CAS  Google Scholar 

  54. Chidlow G, Shibeeb O, Plunkett M, Casson RJ, Wood JP (2013) Glial cell and inflammatory responses to retinal laser treatment: comparison of a conventional photocoagulator and a novel, 3-nanosecond pulse laser. Invest Ophthalmol Vis Sci 54(3):2319–2332

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Sergi Kozirev and Mark Daymon for expert technical assistance.

Funding

This study was supported by The Royal Adelaide Hospital, Vision Research Fund, and by a grant from the Ophthalmic Research Institute of Australia.

Author information

Authors and Affiliations

Authors

Contributions

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: GC, JW and RC. Establishment of rat model of retinal detachment: WOC. Acquisition of data: GC and JW. Analysis and interpretation of data: GC and JW. Drafting of the manuscript: GC. Critical revision of the manuscript for important intellectual content: JW, WOC and RC. Statistical analysis: GC and RC. Obtained funding: WOC and RC. Administrative, technical and material support: RC.

Corresponding author

Correspondence to Glyn Chidlow.

Ethics declarations

Ethics Approval

A statement on the animal ethics approvals obtained prior to commencement of this study has been included in the manuscript. All housing and experimental procedures conformed with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, 2013, and with the ARVO Statement for the use of animals in vision and ophthalmic research.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable. This manuscript does not contain data from any individual person.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidlow, G., Chan, W.O., Wood, J.P.M. et al. Differential Effects of Experimental Retinal Detachment on S- and M/L-Cones in Rats. Mol Neurobiol 59, 117–136 (2022). https://doi.org/10.1007/s12035-021-02582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02582-9

Keywords

Navigation