Skip to main content
Log in

New therapeutic options for bone diseases

Neue therapeutische Optionen für Knochenerkrankungen

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

In recent years, new treatment options for both common and rare bone diseases have become available. The sclerostin antibody romosozumab is the most recently approved drug for the therapy of postmenopausal osteoporosis. Its anabolic capacity makes it a promising treatment option for severe osteoporosis. Other sclerostin antibodies for the treatment of rare bone diseases such as osteogenesis imperfecta are currently being investigated. For rare bone diseases such as X‑linked hypophosphatemia (XLH) and hypophosphatasia (HPP), specific therapies are now also available, showing promising data in children and adults with a severe disease course. However, long-term data are needed to assess a sustained benefit for patients.

Zusammenfassung

Neue therapeutische Möglichkeiten zur Therapie der Osteoporose, aber auch seltener Knochenerkrankungen stehen neuerdings zu Verfügung. Der Sclerostin-Antikörper Romosozumab wurde unlängst zur Behandlung der postmenopausalen Osteoporose zugelassen. Durch seine osteoanabole Wirkung scheint Romosozumab eine vielversprechende Therapieoption der schweren Osteoporose zu sein. Andere Sclerostin-Antikörper werden derzeit bei seltenen Knochenerkrankungen wie der Osteogenesis imperfecta untersucht. Für den Phosphatdiabetes („X-linked hypophosphatemia“, XLH) und die Hypophosphatasie (HPP) stehen nun spezifische Therapien zur Verfügung, die in den bisherigen Studien überzeugende Ergebnisse zeigten. Langzeitdaten sind jedoch erforderlich, um das Risiko-Nutzen-Profil abschätzen zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kocijan R, Klaushofer K, Misof BM. Osteoporosis therapeutics 2020. Handbook of experimental pharmacology. 2020.

    Google Scholar 

  2. Padhi D, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19–26.

    CAS  PubMed  Google Scholar 

  3. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brunkow ME, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68(3):577–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. McClung MR, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20.

    CAS  PubMed  Google Scholar 

  6. Cosman F, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375(16):1532–43.

    CAS  PubMed  Google Scholar 

  7. Cosman F, et al. Romosozumab FRAME study: a post hoc analysis of the role of regional background fracture risk on nonvertebral fracture outcome. J Bone Miner Res. 2018;33(8):1407–16.

    CAS  PubMed  Google Scholar 

  8. Saag KG, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377(15):1417–27.

    CAS  PubMed  Google Scholar 

  9. Lewiecki EM, et al. A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab. 2018;103(9):3183–93.

    PubMed  Google Scholar 

  10. Miyauchi A, et al. Increased bone mineral density for 1 year of romosozumab, vs placebo, followed by 2 years of denosumab in the Japanese subgroup of the pivotal FRAME trial and extension. Arch Osteoporos. 2019;14(1):59.

    PubMed  PubMed Central  Google Scholar 

  11. Lewiecki EM, et al. One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: results of the FRAME extension study. J Bone Miner Res. 2019;34(3):419–28.

    CAS  PubMed  Google Scholar 

  12. McClung MR. Romosozumab for the treatment of osteoporosis. Osteoporos Sarcopenia. 2018;4(1):11–5.

    PubMed  PubMed Central  Google Scholar 

  13. Ebina K, et al. Effects of prior osteoporosis treatment on early treatment response of romosozumab in patients with postmenopausal osteoporosis. Bone. 2020;140:115574.

    CAS  PubMed  Google Scholar 

  14. Langdahl BL, et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet. 2017;390(10102):1585–94.

    CAS  PubMed  Google Scholar 

  15. Bovijn J, et al. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci Transl Med. 2020;12(549):eaay6570. https://doi.org/10.1126/scitranslmed.aay6570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sinder BP, et al. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013;28(1):73–80.

    CAS  PubMed  Google Scholar 

  17. Sinder BP, et al. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015;71:115–23.

    CAS  PubMed  Google Scholar 

  18. Sinder BP, et al. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int. 2014;25(8):2097–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cardinal M, et al. Sclerostin antibody reduces long bone fractures in the oim/oim model of osteogenesis imperfecta. Bone. 2019;124:137–47.

    CAS  PubMed  Google Scholar 

  20. Roschger A, et al. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone. 2014;66:182–8.

    CAS  PubMed  Google Scholar 

  21. Glorieux FH, et al. BPS804 anti-sclerostin antibody in adults with moderate osteogenesis Imperfecta: results of a randomized phase 2a trial. J Bone Miner Res. 2017;32(7):1496–504.

    CAS  PubMed  Google Scholar 

  22. Seefried L, et al. Efficacy of anti-sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia. J Clin Invest. 2017;127(6):2148–58.

    PubMed  PubMed Central  Google Scholar 

  23. Raimann A, Mindler G, Kocijan R, Bekes K, Zwerina J, Haeusler G, et al. Multidisciplinary patient care in X‑linked hypophosphatemic rickets: one challenge, many perspectives. Wien Med Wochenschr. 2020;170:116–23.

    PubMed  PubMed Central  Google Scholar 

  24. Che H, et al. Impaired quality of life in adults with X‑linked hypophosphatemia and skeletal symptoms. Eur J Endocrinol. 2016;174(3):325–33.

    CAS  PubMed  Google Scholar 

  25. Skrinar A, et al. The lifelong impact of X‑linked hypophosphatemia: results from a burden of disease survey. J Endocr Soc. 2019;3(7):1321–34.

    PubMed  PubMed Central  Google Scholar 

  26. Chesher D, et al. Outcome of adult patients with X‑linked hypophosphatemia caused by PHEX gene mutations. J Inherit Metab Dis. 2018;41(5):865–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Haffner D, et al. Clinical practice recommendations for the diagnosis and management of X‑linked hypophosphataemia. Nat Rev Nephrol. 2019;15(7):435–55.

    PubMed  PubMed Central  Google Scholar 

  28. Connor J, et al. Conventional therapy in adults with X‑linked hypophosphatemia: effects on enthesopathy and dental disease. J Clin Endocrinol Metab. 2015;100(10):3625–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Carpenter TO, et al. A clinician’s guide to X‑linked hypophosphatemia. J Bone Miner Res. 2011;26(7):1381–8.

    PubMed  Google Scholar 

  30. Fratzl-Zelman N, et al. Alterations of bone material properties in adult patients with X‑linked hypophosphatemia (XLH). J Struct Biol. 2020;211(3):107556.

    CAS  PubMed  Google Scholar 

  31. Schindeler A, Biggin A, Munns CF. Clinical evidence for the benefits of burosumab therapy for X‑linked hypophosphatemia (XLH) and other conditions in adults and children. Front Endocrinol (Lausanne). 2020;11:338.

    Google Scholar 

  32. Imel EA, et al. Burosumab versus conventional therapy in children with X‑linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet. 2019;393(10189):2416–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Insogna KL, et al. A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X‑linked hypophosphatemia: week 24 primary analysis. J Bone Miner Res. 2018;33(8):1383–93.

    CAS  PubMed  Google Scholar 

  34. Portale AA, et al. Continued beneficial effects of burosumab in adults with X‑linked hypophosphatemia: results from a 24-week treatment continuation period after a 24-week double-blind placebo-controlled period. Calcif Tissue Int. 2019;105(3):271–84.

    CAS  PubMed  Google Scholar 

  35. Lowe D, Sanvictores T, John S. Alkaline phosphatase. Treasure Island (FL): StatPearls Publishing LLC; 2020.

    Google Scholar 

  36. Salles JP. Hypophosphatasia: biological and clinical aspects, avenues for therapy. Clin Biochem Rev. 2020;41(1):13–27.

    PubMed  PubMed Central  Google Scholar 

  37. Vogt M, et al. Pediatric hypophosphatasia: lessons learned from a retrospective single-center chart review of 50 children. Orphanet J Rare Dis. 2020;15(1):212.

    PubMed  PubMed Central  Google Scholar 

  38. Choida V, Bubbear JS. Update on the management of hypophosphatasia. Ther Adv Musculoskelet Dis. 2019;11:1759720x19863997.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kishnani PS, et al. Five-year efficacy and safety of asfotase alfa therapy for adults and adolescents with hypophosphatasia. Bone. 2019;121:149–62.

    CAS  PubMed  Google Scholar 

  40. Bowden SA, Adler BH. Asfotase alfa treatment for 1 year in a 16 year-old male with severe childhood hypophosphatasia. Osteoporos Int. 2018;29(2):511–5.

    CAS  PubMed  Google Scholar 

  41. Hofmann C, Seefried L, Jakob F. Asfotase alfa: enzyme replacement for the treatment of bone disease in hypophosphatasia. Drugs Today (Barc). 2016;52(5):271–85.

    CAS  Google Scholar 

  42. Whyte MP, et al. Asfotase alfa for infants and young children with hypophosphatasia: 7 year outcomes of a single-arm, open-label, phase 2 extension trial. Lancet Diabetes Endocrinol. 2019;7(2):93–105.

    CAS  PubMed  Google Scholar 

  43. Whyte MP, et al. Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab. 2016;101(1):334–42.

    CAS  PubMed  Google Scholar 

  44. Genest F, et al. Physical function and health-related quality of life in adults treated with asfotase alfa for pediatric-onset hypophosphatasia. JBMR Plus. 2020;4(9):e10395.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Simon S, et al. Hypophosphatasia: from diagnosis to treatment. Curr Rheumatol Rep. 2018;20(11):69.

    PubMed  Google Scholar 

  46. Magdaleno AL, et al. Adult-onset hypophosphatasia: before and after treatment with ASFOTASE ALFA. AACE Clin Case Rep. 2019;5(6):e344–e8.

    PubMed  PubMed Central  Google Scholar 

  47. Klidaras P, et al. Fracture healing in two adult patients with hypophosphatasia after asfotase alfa therapy. JBMR Plus. 2018;2(5):304–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rolvien T, et al. Recovery of bone mineralization and quality during asfotase alfa treatment in an adult patient with infantile-onset hypophosphatasia. Bone. 2019;127:67–74.

    PubMed  Google Scholar 

  49. Freitas TQ, Franco AS, Pereira RMR. Improvement of bone microarchitecture parameters after 12 months of treatment with asfotase alfa in adult patient with hypophosphatasia: case report. Medicine. 2018;97(48):e13210.

    PubMed  PubMed Central  Google Scholar 

  50. Seefried L, et al. Pharmacodynamics of asfotase alfa in adults with pediatric-onset hypophosphatasia. Bone. 2020; https://doi.org/10.1016/j.bone.2020.115664.

    Article  PubMed  Google Scholar 

  51. Whyte MP, et al. No vascular calcification on cardiac computed tomography spanning asfotase alfa treatment for an elderly woman with hypophosphatasia. Bone. 2019;122:231–6.

    PubMed  Google Scholar 

  52. Bowden SA, Adler BH. Reappearance of hypomineralized bone after discontinuation of asfotase alfa treatment for severe childhood hypophosphatasia. Osteoporos Int. 2018;29(9):2155–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Kocijan MD.

Ethics declarations

Conflict of interest

R. Kocijan previously received speaker fees, travel grants, research grants, fees for advisory-board and seminars from Alexion, UCB, Amgen and Kyowa Kirin. J. Haschka previously received speaker fees and research grants from Alexion and Amgen. J. Feurstein and J. Zwerina declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocijan, R., Haschka, J., Feurstein, J. et al. New therapeutic options for bone diseases. Wien Med Wochenschr 171, 120–125 (2021). https://doi.org/10.1007/s10354-020-00810-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-020-00810-w

Keywords

Schlüsselwörter

Navigation