Skip to main content

Advertisement

Log in

Influence of a moderate physical activity intervention on red cell deformability in patients suffering from chronic obstructive pulmonary disease (COPD)

Einfluss von moderatem Kraft- und Ausdauertraining auf die Erythrozytenflexibilität bei Patienten mit chronisch obstruktiver Lungenerkrankung (COPD)

  • original article
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

The present study investigates whether a moderate physical activity intervention may alter red cell deformability (RCD) of patients suffering from chronic obstructive pulmonary disease (COPD). Subjects (n = 10; age: 62 ± 4; body-mass index (BMI): 25.8 ± 7.5) performed a training regimen for 10 weeks. In the beginning of the study and after the training period, COPD patients underwent a WHO cycle ergometry test. Venous blood samples were taken before (T0), immediately after (T1) and 30 min after (T2) the intervention. RCD was measured with the laser-assisted optical rotational cell analyzer (LORCA). Significant improvements of the RCD were detected. The semi-maximal shear stress increased significantly. Acute exhaustion had no effect on RCD. Thus, the training period of 10 weeks influenced RCD.

Zusammenfassung

Die vorliegende Studie untersucht, ob eine moderate Intervention zur körperlichen Aktivität die Erythrozytenflexibilität (RCD) bei Patienten mit chronisch obstruktiver Lungenerkrankung (COPD) beeinflusst. Die Probanden (n = 10; Alter: 62 ± 4; BMI: 25,8 ± 7,5) unterzogen sich einer zehnwöchige Trainingsperiode. Zu Beginn und am Ende der Trainingsperiode absolvierten die COPD- Patienten einen WHO-Fahrrad-ergometrie-Test. Bevor (T0), unmittelbar nach (T1) und 30 min nach der Intervention (T2) wurde venöses Blut entnommen. Die RCD wurde mit dem Laser Assisted Optical Rotational Cell Analyzer (LORCA) gemessen. Signifikante Steigerungen der RCD wurden festgestellt. Die semimaximale Scherkraft steigerte sich signifikant. Akute Erschöpfung hatte keine Auswirkung auf die RCD. Die zehnwöchige Trainingsperiode beeinflusste somit die Erythrozytenflexibilität.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet. 1997;349(9063):1436–42.

    Article  PubMed  CAS  Google Scholar 

  2. Lopez AD, Shibuya K, Rao C, Mathers CD, Hansell AL, Held LS, Schmid V, Buist S. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006;27(2):397–412.

    Article  PubMed  CAS  Google Scholar 

  3. Gershon AS, Warner L, Cascagnette P, Victor JC, To T. Lifetime risk of developing chronic obstructive disease: a longitudinal population study. Lancet. 2011;378:991–6.

    Article  PubMed  Google Scholar 

  4. Fletcher MJ, Upton J, Taylor-Fishwick J, Buist SA, Jenkins C, Hutton J, Barnes N, Van Der Molen T, Walsh JW, Jones P, Walker S. COPD uncovered: an international survey on the impact of chronic obstructive pulmonary disease [COPD] on a working age population. BMC Public Health. 2011;11:612–25.

    Article  PubMed  Google Scholar 

  5. Meyer A, Baumann HJ. Bewegungstherapie bei COPD. Dtsch Z Sportmedv. 2007;10:351–6.

    Google Scholar 

  6. Nadeem A, Raj AG, Chabra SK. Effect of vitamin E supplementation with standard treatment on oxidant-antioxidant status in chronic obstructive pulmonary disease. Indian J Med Res. 2008;128:705–11.

    PubMed  CAS  Google Scholar 

  7. Mannino DM, Martinez FJ. Lifetime risk of COPD: what will the future bring? Lancet. 2011;378:964–5.

    Article  PubMed  Google Scholar 

  8. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378:1015–26.

    Article  PubMed  CAS  Google Scholar 

  9. Minetti M, Leto T, Malorni W. Radical generation and alterations of erythrocyte integrity as bioindicators of diagnostic or prognostic value in COPD? Antioxid Redox Signal. 2008;10(4):829–36.

    Article  PubMed  CAS  Google Scholar 

  10. Pietraforte D, Matarrese P, Strafece E, Gambardella L, Metere A, Scorza G, Leto TL, Malorni W, Minetti M. Two different pathways are involved in peroxynitrite-induced senescence and apoptosis of human erythrocytes. Free Radic Biol Med. 2007;42:202–14.

    Article  PubMed  CAS  Google Scholar 

  11. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003;22:672–88.

    Article  PubMed  CAS  Google Scholar 

  12. Drost EM, Skwarski KM, Sauleda J, Soler N, Roca J, Agusti A, MacNee W. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax. 2005;60:293–300.

    Article  PubMed  CAS  Google Scholar 

  13. Lucantoni G, Pietraforte D, Matarresse P, Gambardella L, Meter A, Paone G, Bianchi EL, Straface E. The red blood cell as a biosensor for monitoring oxidative imbalance in chronic obstructive pulmonary disease: an ex vivo and in vitro study. Antioxid Redox Signal. 2006;8:1172–82.

    Article  Google Scholar 

  14. Berliner S, Rogowski O, Aharonov S, Mardi T, Tolshinsky T, Rozenblat M, Justo D, Deutsch V, Serov J, Shapira I, Zeltzer D. Erythrocyte adhesiveness/aggregation: a novel biomarker for the detection of low-grade internal inflammation and proven vascular disease. Am Heart J. 2005;149:260–7.

    Article  PubMed  CAS  Google Scholar 

  15. Rogowski O, Berliner S, Zeltser D, Serov J, Ben-Assayag E, Justo D, Rozenblat M, Kessler A, Deutsch V, Zakuth V, Shapira I. The erythrocytosense as a real-time biomarker to reveal the presence of enhanced red blood cell aggregability in atherothrombosis. Am J Ther. 2005;12:286–92.

    Article  PubMed  Google Scholar 

  16. Shin S, Ku YH, Ho JX, Kim YK, Suh JS, Singh M. Progressive impairment of erythrocyte deformability as indicator of microangiopathy in type 2 diabetes mellitus. Clin Hemorheol Microcirc. 2007;36:253–61.

    PubMed  CAS  Google Scholar 

  17. Chien S. Red cell deformability and its relevance to blood flow. Ann Rev Physiol. 1987;49:177–92.

    Article  CAS  Google Scholar 

  18. Chien S. Shear dependence of effective cell volume as a determinant of blood viscosity. Science. 1970;168:977–8.

    Article  PubMed  CAS  Google Scholar 

  19. Mohandas N, Clark MR, Jacobs MS, Groner W, Shohet SB. Ektacytometric analysis of factors regulating red cell deformability. Blood Cells. 1980;6:329–34.

    PubMed  CAS  Google Scholar 

  20. Athanassiou GA, Moutzouri AG, Gogos CA, Skouletis AT. Red blood cell deformability in patients with human immunodeficiency virus infection. Eur J Clin Microbiol Infect Dis. 2010;29(7):845–9.

    Article  PubMed  CAS  Google Scholar 

  21. Cicco G, Pirelli A. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension. Clin Hemorheol Microcirc. 1999;21:169–77.

    PubMed  CAS  Google Scholar 

  22. Wen ZG. Observation on red cell deformability in patients with cor pulmonale. Zhonghua Jie He He Hu Xi Za Zhi. 1992;15(5):279–81, 318–9.

    PubMed  CAS  Google Scholar 

  23. Muravyov AV, Draygin SV, Eremin NN, Muravyov AA. The microrheological behavior of young and old red blood cells in athletes. Clin Hemorheol Microcirc. 2002;26:183–8.

    PubMed  CAS  Google Scholar 

  24. Cakir-Atabek H, Atsak P, Gunduz N, Bor-Kucukatay M. Effects of resistance training intensity on deformability and aggregation of red blood cells. Clin Hemorheol Microcirc. 2009;41:251–61.

    PubMed  Google Scholar 

  25. Lacasse Y, Brosseau S, Milne S, Martin E, Wong E, Guayatt G, Goldstein R, White J. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006;4:CD003793. Review.

    Google Scholar 

  26. Niederman M, Clemente P, Fein A, Feinsilver S, Robinson D, Ilowite J, Bernstein M. Benefits of a multidisciplinary pulmonary rehabilitation program. Improvements are independent of lung function. Chest. 1991;99:798–804.

    Article  PubMed  CAS  Google Scholar 

  27. Maltais F, Simard AA, Simard C, Jobin J, Desgagnes P, Leblanc P. Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD. Am J Respir Crit Care Med. 1996;153:288–93.

    Article  PubMed  CAS  Google Scholar 

  28. O’Shea SD, Taylor NF, Paratz J. Peripheral muscle strength training in COPD: a systematic review. Chest. 2004;126:903–14.

    Article  PubMed  Google Scholar 

  29. Griffiths TL, Burr ML, Campbell IA, Lewis-Jenkins V, Mullins J, Shiels K, Turner-Lawlor PJ, Payne N, Newcombe RG, Ionescu A, Thomas J, Tunbridge J. Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomized control trial. Lancet. 2000;355:362–8.

    Article  PubMed  CAS  Google Scholar 

  30. Salman G, Mosier M, Beasley B, Calkins D. Rehabilitation for patients with chronic obstructive pulmonary disease: meta-analysis of randomized controlled trials. J Gen Intern Med. 2003;18:213–21.

    Article  PubMed  Google Scholar 

  31. Ko FWS, Hui DSC. The lower the body weight for COPD patients, the more effective is pulmonary rehabilitation? Am Pol Sci Rev. 2011;16:187–9.

    Google Scholar 

  32. Baskurt OK, Hardeman MR, Uyuklu M, Ulker P, Cengiz M, Nemeth N, Shin S, Alexy T, Meiselman HJ. Parameterization of red blood cell elongation index—shear stress curves obtained by ektacytometry. Scand J Clin Lab Investig. 2009;69:777–88.

    Article  CAS  Google Scholar 

  33. Decramer M. Effects of rehabilitation and muscle training on quality of life in COPD patients. Eur Respir Rev. 1997;7:92–5.

    Google Scholar 

  34. Bernard S, LeBlanc P, Whittom F, Carrier G, Jobin J, Belleau R, Maltais F. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158:629–34.

    Article  PubMed  CAS  Google Scholar 

  35. Lacasse Y, Wong E, Guyatt GH, King D, Cook DJ, Goldstein RS. Meta-analysis of respiratory rehabilitation in chronic obstructive pulmonary disease. Lancet. 1996;348:1115–9.

    Article  PubMed  CAS  Google Scholar 

  36. O’Donnell DE, McGuire M, Samis L, Webb KA. General exercise training improves ventilatory and peripheral muscle strength and endurance in chronic airflow limitation. Am J Respir Crit Care Med. 1998;157:1489–97.

    Article  PubMed  Google Scholar 

  37. Gosselink R, Trooster T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med. 1996;153:976–80.

    Article  PubMed  CAS  Google Scholar 

  38. Hamilton AL, Killian KJ, Summers E, Jones NL. Muscle strength, symptom intensity, and exercise capacity in patients with cardio-respiratory disorders. Am J Respir Crit Care Med. 1995;152:2021–31.

    Article  PubMed  CAS  Google Scholar 

  39. Serres I, Gautier V, Varray A, Prefaut C. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest. 1998;113:900–5.

    Article  PubMed  CAS  Google Scholar 

  40. Jakobsson P, Jorfeldt L, Brundin A. Skeletal muscle metabolites and fibre types in patients with advanced chronic obstructive pulmonary disease (COPD) with and chronic respiratory failure. Eur Respir J. 1990;3:192–6.

    PubMed  CAS  Google Scholar 

  41. Spruit MA, Gosselink R, Troosters T, De Paepe K, Decramer M. Resistance versus endurance training in patients with COPD and peripheral muscle weakness. Eur Respir J. 2002;19:1072–8.

    Article  PubMed  CAS  Google Scholar 

  42. Gallefoss F, Bakke PS. Cost-benefit and cost-effectiveness analysis of self-management in patients with COPD—a 1-year follow-up randomized, controlled trial. Respir Med. 2002;96:330–5.

    Article  Google Scholar 

  43. Rossi G, Florini F, Romagnoli M, Bellantone T, Lucic S, Lugli D, Clini E. Length and clinical effectiveness of pulmonary rehabilitation in outpatients with chronic airway obstruction. Chest. 2005;127:105–9.

    Article  PubMed  Google Scholar 

  44. Whittom F, Jobin J, Simard PM, Leblanc P, Simard C, Bernard S, Belleau R, Maltais F. Histochemical and morphological characteristics of vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc. 1998;30:1467–74.

    Article  PubMed  CAS  Google Scholar 

  45. Ricciardolo O, Di Stefano A, Sabatini F, Folkerts G. Reactive nitrogen species in the respiratory tract. Eur J Pharmacol. 2006;533:240–52.

    Article  PubMed  CAS  Google Scholar 

  46. De Castro J, Hernández-Hernández A, Rodrígzuez MC, Sardina JL, Llanillo M, Sánchez-Yagȕe J. Comparison of changes in erythrocyte and platelet phospholipid and fatty acid composition and protein oxidation in chronic obstructive pulmonary disease and asthma. Platelets. 2007;18(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  47. Santini MT, Cipri A, Peverini M, Straface E, Malorni W. Ultrastructural alterations in erythrocytes from COPD patients. Haemostasis. 1997;27:201–10.

    PubMed  CAS  Google Scholar 

  48. Cook MK. Red cell macrocytosis and COPD. Br J Haematol. 1993;83:174–6.

    Article  PubMed  CAS  Google Scholar 

  49. Tsantes A, Papadhimitriou SI, Tassiopoulos ST, Bonovas S, Paterakis G, Meletis I, Loukopoulos D. Red cell macrocytosis in hypoxemic patients with chronic obstructive pulmonary disease. Resp Med. 2004;98(11):1117–23.

    Article  Google Scholar 

  50. Temiz A, Baskurt OK, Pekcetin C, Kandemir F, Güre A. Leukocyte activation, oxidant stress and red blood cell properties after acute, exhausting exercise in rats. Clin Hemorheol Microcirc. 2000;22:253–9.

    PubMed  CAS  Google Scholar 

  51. Yalcin O, Bor-Kucukatay M, Sentürk UK, Baskurt O. Effects of swimming exercise on red blood cell rheology in trained and untrained rats. J Appl Physiol. 2000;88:2074–80.

    PubMed  CAS  Google Scholar 

  52. Baskurt OK, Farley RA, Meiselmann HJ. Erythrocyte aggregation tendency and cellular properties in horse, human and rat: a comparative study. Am J Physiol. 1997;273(6):H2604–12.

    PubMed  CAS  Google Scholar 

  53. Hawkey CM, Bennet PM, Gascoyne SC, Hart MG, Kirkwood JK. Erythrocyte size, number and hemoglobin content in vertebrates. Br J Haematol. 1991;77(3):392–7.

    Article  PubMed  CAS  Google Scholar 

  54. Sentürk UK, Gündüz F, Kuru O, Kocer G, Ozkaya YG, Yesilkaya A, Bor-Kücükatay M, Uyüklu M, Yalcin O, Baskurt OK. Exercise-induced oxidative stress leads hemolysis in sedentary but not trained humans. J Appl Physiol. 2005;99(4):1434–41.

    Google Scholar 

  55. Smith JA. Exercise, training and red blood cell turnover. Sports Med. 1995;19:9–31.

    Article  PubMed  CAS  Google Scholar 

  56. Szygula Z. Erythrocytic system under the influence of physical exercise and training. Sports Med. 1990;10:181–97.

    Article  PubMed  CAS  Google Scholar 

  57. Weight LM, Byrne MJ, Jacobs P. Haemolytic effects of exercise. Clin Sci (Lond). 1991;81(2):147–52.

    PubMed  CAS  Google Scholar 

  58. Mika P, Spodaryk K, Cencora A, Mika A. Red cell deformability in patients with claudication after pain-free treadmill training. Clin J Sport Med. 2006;16:335–40.

    Article  PubMed  Google Scholar 

  59. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2003;284:1–12.

    Google Scholar 

  60. Suhr F, Porten S, Hertrich T, Brixius K, Schmidt A, Platen P, Bloch W. Intensive exercise induces changes of endothelial nitric oxide synthase pattern in human erythrocytes. Nitric Oxide. 2009;20:95–103.

    Article  PubMed  CAS  Google Scholar 

  61. Simmonds MJ, Tripette J, Sabapathy S, Marshall-Gradisnik SM, Connes P. Cardiovascular dynamics during exercise are related to blood rheology. Clin Hemorheol Microcirc. 2011;49:231–41.

    PubMed  Google Scholar 

  62. Cabrales P. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia. Am J Physiol Heart Circ Physiol. 2007;293:H1206–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klara Brixius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, B., Ferrari, N., Montiel, G. et al. Influence of a moderate physical activity intervention on red cell deformability in patients suffering from chronic obstructive pulmonary disease (COPD). Wien Med Wochenschr 163, 334–339 (2013). https://doi.org/10.1007/s10354-013-0183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-013-0183-7

Keywords

Schlüsselwörter

Navigation