Skip to main content

Advertisement

Log in

The Effect of a Hyaluronan-Carboxymethylcellulose Membrane vs. Polyglactin 910 Mesh on Intra-Abdominal Tumor Formation in Mice

  • Original Contribution
  • Published:
Diseases of the Colon & Rectum

Abstract

Purpose

Hyaluronan mediates growth of SW620 colon cancer cells. Because hyaluronan is the active ingredient in Seprafilm®, we hypothesized that Seprafilm® would affect intraperitoneal tumor growth in a mouse model of peritoneal seeding.

Methods

Immunodeficient mice underwent laparotomy and intraperitoneal inoculation of 105 SW620 cells. Seprafilm® (n = 22), Vicryl mesh (foreign body control; n = 24), or no material (sham; n = 19) was placed under the incision. Mice were killed after four weeks and tumors were dissected, counted, and weighed.

Results

Ninety-five percent of mice in the sham group and 96 percent in the Vicryl group developed intraperitoneal tumors. In contrast, only 64 percent of mice in the Seprafilm® group developed tumors (P = 0.024), and these tumors were smaller than those in the sham group; (Seprafilm® = 42 ± 9 mg vs. sham = 82 ± 17 mg; P = 0.05). In contrast, tumors in the Vicryl group were dramatically larger (349 ± 49 mg; P < 0.001 vs. sham or Seprafilm®).

Conclusions

Despite previous data that suggested that hyaluronan increases colon cancer cell growth, we found that Seprafilm® decreased tumor formation and tended to decrease size in this model. In contrast, Vicryl mesh increased tumor formation and size. Our results suggest that Seprafilm® does not promote intraperitoneal tumor growth, especially compared with Vicryl mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rodier JF, Janser JC, Delahaye JF, Rodier D. Use of polyglactin 910 mesh (Vicryl) in pelvic oncologic surgery. Adv Ther 1992;9:233–9.

    PubMed  CAS  Google Scholar 

  2. Dasmahapatra KS, Swaminathan AP. The use of a biodegradable mesh to prevent radiation-associated small-bowel injury. Arch Surg 1991;126:366–9.

    PubMed  CAS  Google Scholar 

  3. Hoffman MS, Roberts WS, LaPolla JP, Fiorica JV, Cavanagh D. Use of Vicryl mesh in the reconstruction of the pelvic floor following exenteration. Gynecol Oncol 1989;35:170–1.

    Article  PubMed  CAS  Google Scholar 

  4. Menzel EJ, Farr C. Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Lett 1998;131:3–11.

    Article  PubMed  CAS  Google Scholar 

  5. West DC, Kumar S. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp Cell Res 1989;183:179–96.

    Article  PubMed  CAS  Google Scholar 

  6. Arai H, Kang KY, Sato H, et al. Significance of the quantification and demonstration of hyaluronic acid in tissue specimens for the diagnosis of pleural mesothelioma. Am Rev Resp Dis 1979;120:529–32.

    PubMed  CAS  Google Scholar 

  7. Hopwood JJ, Dorfman A. Glycosaminoglycan synthesis by Wilms’ tumor. Pediatr Res 1978;12:52–6.

    PubMed  CAS  Google Scholar 

  8. Auvinen PK, Parkkinen JJ, Johansson RT, et al. Expression of hyaluronan in benign and malignant breast lesions. Int J Cancer 1997;74:477–81.

    Article  PubMed  CAS  Google Scholar 

  9. Auvinen P, Tammi R, Parkkinen J, et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol 2000;156:529–36.

    PubMed  CAS  Google Scholar 

  10. Setala LP, Tammi MI, Tammi RH, et al. Hyaluronan expression in gastric cancer cells is associated with local and nodal spread and reduced survival rate. Br J Cancer 1999;79:1133–8.

    Article  PubMed  CAS  Google Scholar 

  11. Lovvorn HN 3rd, Savani RC, Ruchelli E, Cass DL, Adzick NS. Serum hyaluronan and its association with unfavorable histology and aggressiveness of heterotransplanted Wilms’ tumor. J Pediatr Surg 2000;35:1070–8.

    Article  PubMed  Google Scholar 

  12. Wang C, Tammi M, Guo H, Tammi R. Hyaluronan distribution in the normal epithelium of esophagus, stomach, and colon and their cancers. Am J Pathol 1996;148:1861–9.

    PubMed  CAS  Google Scholar 

  13. Paiva P, Van Damme MP, Tellbach M, Jones RL, Jobling T, Salamonsen LA. Expression patterns of hyaluronan, hyaluronan synthases and hyaluronidases indicate a role for hyaluronan in the progression of endometrial cancer. Gynecol Oncol 2005;98:193–202.

    Article  PubMed  CAS  Google Scholar 

  14. Ropponen K, Tammi M, Parkkinen J, et al. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res 1998;58:342–7.

    PubMed  CAS  Google Scholar 

  15. Li Y, Heldin P. Hyaluronan production increases the malignant properties of mesothelioma cells. Br J Cancer 2001;85:600–7.

    Article  PubMed  CAS  Google Scholar 

  16. Bullard KM, Kim HR, Wheeler MA, et al. Hyaluronan synthase-3 is upregulated in metastatic colon carcinoma cells and manipulation of expression alters matrix retention and cellular growth. Int J Cancer 2003;107:739–46.

    Article  PubMed  CAS  Google Scholar 

  17. Kim HR, Wheeler MA, Wilson CM, et al. Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44. Cancer Res 2004;64:4569–76.

    Article  PubMed  CAS  Google Scholar 

  18. Wilson CM, Wheeler MA, McCarthy JB, et al. Hyaluronan increases colon carcinoma cell growth in vitro. Dis Colon Rectum 2005;48:606.

    Google Scholar 

  19. Deutsch AA, Stern HS. Technique of insertion of pelvic Vicryl mesh sling to avoid post radiation enteritis. Dis Colon Rectum 1989;32:628–30.

    Article  PubMed  CAS  Google Scholar 

  20. Soper JT, Clarke-Pearson DL, Creasman WT. Absorbable synthetic mesh (910-polyglactin) intestinal sling to reduce radiation-induced small bowel injury in patients with pelvic malignancies. Gynecol Oncol 1988;29:283–9.

    Article  PubMed  CAS  Google Scholar 

  21. Clarke-Pearson DL, Soper JT, Creasman WT. Absorbable synthetic mesh (polyglactin 910) for the formation of a pelvic “lid” after radical pelvic resection. Am J Obstet Gynecol 1988;158:158–61.

    PubMed  CAS  Google Scholar 

  22. Kusunoki M, Ikeuchi H, Yanagi H, et al. Bioresorbable hyaluronate-carboxymethylcellulose membrane (Seprafilm® in surgery for rectal carcinoma: a prospective randomized clinical trial. Surg Today 2005;35:940–5.

    Article  PubMed  Google Scholar 

  23. Oikonomakis I, Wexner SD, Gervaz P, You SY, Secic M, Giamundo P. Seprafilm®: a retrospective preliminary evaluation of the impact on short-term oncologic outcome in colorectal cancer. Dis Colon Rectum 2002;45:1376–80.

    Article  PubMed  Google Scholar 

  24. Hubbard SC, Burns JW. Effects of a hyaluronan-based membrane (Seprafilm®) on intraperitoneally disseminated human colon cancer cell growth in a nude mouse model. Dis Colon Rectum 2002;45:334–44.

    Article  PubMed  Google Scholar 

  25. Pucciarelli S, Codello L, Rosato A, Del Bianco P, Vecchiato G, Lise M. Effect of antiadhesive agents on peritoneal carcinomatosis in an experimental model. Br J Surg 2003;90:66–71.

    Article  PubMed  CAS  Google Scholar 

  26. Gago LA, Saed GM, Chauhan S, Elhammady EF, Diamond MP. Seprafilm® (modified hyaluronic acid and carboxymethylcellulose) acts as a physical barrier. Fertil Steril 2003;80:612–6.

    Article  PubMed  Google Scholar 

  27. Tarhan OR, Eroglu A, Cetin R, Y Nce A, Bulbul M, Altuntas YR. Effects of Seprafilm® on peritoneal fibrinolytic system. ANZ J Surg 2005;75:690–2.

    Article  PubMed  Google Scholar 

  28. Ghatak S, Misra S, Toole BP. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem 2002;277:38013–20.

    Article  PubMed  CAS  Google Scholar 

  29. Gencosmanoglu R, Asoglu O, Bugra D, Bulut T, Cevikbas U, Yamaner S. The impact of various suture materials on experimental colorectal carcinogenesis. Surg Today 2001;31:215–21.

    Article  PubMed  CAS  Google Scholar 

  30. McCue JL, Sheffield JP, Uff C, Phillips RK. Experimental carcinogenesis at sutured and sutureless colonic anastomoses. Dis Colon Rectum 1992;35:902–9.

    Article  PubMed  CAS  Google Scholar 

  31. Kyzer S, Gordon PH. Proliferative activity at rectal anastomoses performed with various suture materials. An experimental study. Dis Colon Rectum 1995;38:1026–32.

    Article  PubMed  CAS  Google Scholar 

  32. McCue JL, Phillips RK. Cellular proliferation at sutured and sutureless colonic anastomoses. Dis Colon Rectum 1993;36:468–74.

    Article  PubMed  CAS  Google Scholar 

  33. O'Dwyer P, Ravikumar TS, Steele G Jr. Serum dependent variability in the adherence of tumour cells to surgical sutures. Br J Surg 1985;72:466–9.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Charles LeVea, M.D., Ph.D., Roswell Park Cancer Institute, Buffalo, New York, for pathologic evaluation of the tumors, Mr. Jerry Vincent, University of Minnesota, for technical assistance with Figures 2 and 3, and Genzyme Corporation for their generous gift of Seprafilm®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelli M. Bullard Dunn M.D..

Additional information

Reprints are not available.

About this article

Cite this article

Lee, P.K., Windsperger, A.P., Wilson, C.M. et al. The Effect of a Hyaluronan-Carboxymethylcellulose Membrane vs. Polyglactin 910 Mesh on Intra-Abdominal Tumor Formation in Mice. Dis Colon Rectum 51, 1403–1407 (2008). https://doi.org/10.1007/s10350-008-9299-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10350-008-9299-z

Key words

Navigation