Skip to main content
Log in

Facies analysis and depositional evolution of Lower–Middle Ordovician carbonates in the Shuntuoguole Low Uplift of Tarim Basin (NW China)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

As a result of a deep burial depth (> 6.5 km), the depositional history of the Early to Middle Ordovician carbonate platform in the Shuntuoguole Low Uplift (Tarim Basin, NW China) has been difficult to unravel, leading to problems in understanding the controls of the facies distribution, particularly in terms of petroleum exploration. Integrated with geophysical surveys, detailed sedimentological observations document the platform evolution and show that a carbonate ramp system developed in the Shuntuoguole Low Uplift during the Early-Middle Ordovician, with twelve lithofacies types arranged into two facies associations, including peritidal to semi-restricted subtidal and open-marine subtidal facies. Based on the tempo-spatial distribution of lithofacies, seven third-order depositional sequences are identified, each composed of a transgressive lower package and a regressive upper part. Their sequence boundaries are commonly characterised by a transitional zone with no obvious subaerial exposure features. The correlation of relative sea-level (or accommodation space) changes derived from the vertical stacking pattern of facies with the global sea-level curve of Haq and Schutter (2008) and sea-level oscillations of coeval successions worldwide suggests that eustatic sea-level fluctuations were the overriding factor controlling the development and evolution of this carbonate ramp during the Early-Middle Ordovician. Meanwhile, regional or local tectonic subsidence and environmental factors (e.g. palaeoclimate and prevailing wind) also exerted an influence on the depositional processes of the Shuntuoguole Low Uplift over this time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified from Yu and Fu (2006), Zhao et al. (2006), Zhao et al. (2009), and Zhang and Munnecke (2016)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aghaei A, Mahboubi A, Moussavi-Harami R, Heubeck C, Nadjafi M (2013) Facies analysis and sequence stratigraphy of an Upper Jurassic carbonate ramp in the Eastern Alborz range and Binalud Mountains, NE Iran. Facies 59(4):863. https://doi.org/10.1007/s10347-012-0339-8

    Article  Google Scholar 

  • Assadi A, Honarmand J, Moallemi S-A, Abdollahie-Fard I (2016) Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran. Facies 62(4):26. https://doi.org/10.1007/s10347-016-0477-5

    Article  Google Scholar 

  • Bádenas B, Aurell M (2010) Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain). Facies 56(1):89. https://doi.org/10.1007/s10347-009-0199-z

    Article  Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sed Geol 79(1):3–57

    Article  Google Scholar 

  • Bynum J, Pashin J, Wethington C (2022) Depositional and stratigraphic architecture of a mixed carbonate–siliciclastic depositional system in the Mississippian (Lower Carboniferous) of the Southern Midcontinent, Oklahoma, USA. Facies https://doi.org/10.1007/s10347-022-00655-2

  • Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newslett Stratigr 44(3):173–245

    Article  Google Scholar 

  • Chen D, Tucker ME, Jiang M, Zhu J (2001) Long-distance correlation between tectonic-controlled, isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China. Sedimentology 48(1):57–78

    ADS  Google Scholar 

  • Chen D, Guo Z, Jiang M, Guo C, Ding Y (2016) Dynamics of cyclic carbonate deposition and biotic recovery on platforms during the Famennian of Late Devonian in Guangxi, South China: Constraints from high-resolution cycle and sequence stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 448:245–265

    Article  Google Scholar 

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54(2):207–250

    Google Scholar 

  • Cocks LRM, Torsvik TH (2021) Ordovician palaeogeography and climate change. Gondwana Res 100:53–72

    Article  ADS  Google Scholar 

  • Ding Y, Chen D, Zhou X, Guo C, Huang T, Zhang G (2019) Tectono-depositional pattern and evolution of the middle Yangtze Platform (South China) during the late Ediacaran. Precambr Res 333:105426. https://doi.org/10.1016/j.precamres.2019.105426

    Article  CAS  Google Scholar 

  • Ding Y, Li Z, Liu S, Song J, Zhou X, Sun W, Zhang X, Li S, Ran B, Peng H, Li Z, Wang H, Chen D (2021) Sequence stratigraphy and tectono-depositional evolution of a late Ediacaran epeiric platform in the upper Yangtze area, South China. Precambrian Res 354:106077. https://doi.org/10.1016/j.precamres.2020.106077

    Article  CAS  Google Scholar 

  • Dong S, Chen D, Zhou X, Qian Y, Tian M, Qing H (2017) Tectonically-driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-west China. Sedimentology 64(4):1079–1106

    Article  CAS  Google Scholar 

  • Dong S, You D, Guo Z, Guo C, Chen D (2018) Intense silicification of Ordovician carbonates in the Tarim Basin: Constraints from fluid inclusion Rb-Sr isotope dating and geochemistry of quartz. Terra Nova 30(6):406–413

    Article  CAS  ADS  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional textures. In: Ham WE (ed) Classification of Carbonate Rocks. AAPG Memoir, vol 1, pp 108–121

  • Embry AF (1993) Transgressive-regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago. Can J Earth Sci 30:301–320

    Article  Google Scholar 

  • Embry AF, Johannessen EP (1992) T–R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup Basin, Arctic Canada. In: Vorren TO, Bergsager E, Dahl-Stamnes OA, Holter E, Johansen B, Lie E, Lund TB (eds), Arctic Geology and Petroleum Potential Norwegian Petroleum Society (NPF), vol 2. Special Publication, pp 121–146

  • Fang DJ, Shen ZY (2001) Phanerozoic apparent polar-wander paths of Tarim and plate motion. J Zhejiang University (science Edition) 28(1):100–106

    Google Scholar 

  • Feng ZZ, Bao ZD, Wu MB, Jin ZK, Shi XZ, Luo AR (2007) Lithofacies palaeogeography of the Ordovician in Tarim area. J Palaeogeogr 9(5):447–460

    Google Scholar 

  • Flügel E (2010) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Heidelberg New York, pp 984

  • Gao ZQ, Fan TL, Jiao ZF, Li Y (2006) The structural types and depositional characteristics of carbonate platform in the Cambrian-Ordovician of Tarim Basin. Acta Sedimentol Sin 24(1):19–27

    Google Scholar 

  • Gao ZQ, Fan TL, Ding QN, Hu XL (2016) A Third-order unconformity within Lower Ordovician carbonates in the Tarim Basin, NW China: Implications for reservoir development. J Pet Geol 39(3):287–304

    Article  CAS  Google Scholar 

  • Gao D, Lin CS, Huang LL, Hu MY, Ren P, Sun CY, Zhao YR (2021) Depositional facies and diagenesis of the Lianglitage Formation in northwestern Tazhong Uplift, Tarim Basin, China: implications for the genesis of ultra-deep limestone reservoir. Arab J Geosci 14(9):750. https://doi.org/10.1007/s12517-021-07080-9

    Article  Google Scholar 

  • Guo F, Lai SH, Guo L (2010) Ordovician sequence stratigraphy and sedimentology in the Dabantage area, Tarim Basin. J Stratigr 34(2):135–144

    Google Scholar 

  • Guo C, Chen DZ, Qing HR, Dong SF, Li GR, Wang D, Qian YX, Liu CG (2016) Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin, China. Mar Pet Geol 72:295–316

    Article  CAS  Google Scholar 

  • Guo C, Chen DZ, Dong SF, Qian YX, Liu CG (2017) Early dolomitisation of the Lower-Middle Ordovician cyclic carbonates in northern Tarim Basin, NW China. Sci China Earth Sci 60(7):1283–1298

    Article  CAS  ADS  Google Scholar 

  • Guo C, Chen DZ, Song YF, Zhou XQ, Ding Y, Zhang GJ (2018a) Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin (NW China). J Asian Earth Sci 158:29–48

    Article  ADS  Google Scholar 

  • Guo C, Chen DZ, Zhou XQ, Ding Y, Wei WW, Zhang GJ (2018b) Depositional facies and cyclic patterns in a subtidal-dominated ramp during the Early-Middle Ordovician in the western Tarim Basin (NW China). Facies. https://doi.org/10.1007/s10347-018-0529-0

    Article  Google Scholar 

  • Guo C, Chen DZ, Qing HR, Zhou XQ, Ding Y (2020) Early dolomitization and recrystallization of the Lower-Middle Ordovician carbonates in western Tarim Basin (NW China). Mar Pet Geol 111:332–349

    Article  CAS  Google Scholar 

  • Guo C, Chen DZ, Fu Y, Song YF, Wang YZ (2022) Depositional evolution and its controls of the Middle Ordovician Yijianfang Formation in western Tarim basin. Acta Geol Sin 96(11):3924–3942

    Google Scholar 

  • Hamon Y, Merzeraud G (2008) Facies architecture and cyclicity in a mosaic carbonate platform: effects of fault-block tectonics (Lower Lias, Causses platform, south-east France). Sedimentology 55(1):155–178

    Article  Google Scholar 

  • Han J, Kuang AP, Neng Y, Huang C, Li QQ, Chen P, Shen ZY (2021) Vertical layered structure of Shunbei No. 5 strike⁃Slip fault zone and its significance on hydrocarbon accumulation. Xinjiang Petroleum Geol 42(2):152–160

    Google Scholar 

  • Haq BU, Schutter SR (2008) A chronology of Paleozoic sea-level changes. Science 322(5898):64–68

    Article  CAS  PubMed  ADS  Google Scholar 

  • He ZL, Mao HB, Zhou XF, Cong M, She XY (2000) Complex petroleum system and muticycle basin in Tarim. Oil Gas Geol 21(3):207–213

    Google Scholar 

  • Hu MY, Qian Y, Hu ZG, Wang YQ, Xiang J (2010) Carbonate isotopic and element geochemical responses of carbonate rocks and Ordovician sequence stratigraphy in Keping area, Tarim Basin. Acta Petrologica Et Mineralogica 29(2):199–205

    CAS  Google Scholar 

  • Hu MY, Hu ZG, Li ST, Wang YQ (2011) Geochemical characteristics and genetic mechanism of the Ordovician dolostone in the Tazhong area, Tarim Basin. Acta Geol Sin 85(12):2060–2069

    CAS  Google Scholar 

  • Jia L, Cai C, Jiang L, Zhang K, Li H, Zhang W (2016) Petrological and geochemical constraints on diagenesis and deep burial dissolution of the Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China. Mar Pet Geol 78:271–290

    Article  CAS  Google Scholar 

  • Jiang HJ, Chen QL, You DH, Huang JW, Chen Y (2015) The different Ordovician sequence boundary’s features and factors of Keping-Bachu area in Tarim Basin. Xinjiang Geol 33(1):84–89

    Google Scholar 

  • Jiang L, Worden RH, Cai C, Shen A, He X, Pan L (2018) Contrasting diagenetic evolution patterns of platform margin limestones and dolostones in the Lower Triassic Feixianguan Formation, Sichuan Basin, China. Mar Pet Geol 92:332–351

    Article  CAS  Google Scholar 

  • Kang YZ, Kang ZH (1994) Tectonic evolution and oil and gas of the Tarim Basin. Acta Geosci Sin 3–4:180–191

    Google Scholar 

  • Kanygin A, Dronov A, Timokhin A, Gonta T (2010) Depositional sequences and palaeoceanographic change in the Ordovician of the Siberian craton. Palaeogeogr Palaeoclimatol Palaeoecol 296:285–296

    Article  Google Scholar 

  • Lan XD, Liu H, Lü XX, Lan BH (2018) Dolomites of the Yingshan Formation in the Tazhong Low Rise, Tarim Basin: dolomitisation and reformation model. Geosci J 22(1):47–64

    Article  Google Scholar 

  • Laya JC, Tucker ME (2012) Facies analysis and depositional environments of Permian carbonates of the Venezuelan Andes: Palaeogeographic implications for Northern Gondwana. Palaeogeogr Palaeoclimatol Palaeoecol 331–332:1–26

    Article  Google Scholar 

  • Li YA, Li Q, Zhang H, Sun DJ, Cao YD, Wu SZ (1995) Palaeomagnetic study of Tarim and its adjacent area as well as the formation and evolution of Tarim Basin. Xijiang Geol 13(4):293–376

    Google Scholar 

  • Li QJ, Li Y, Zhang YD, Munnecke A (2017) Dissecting Calathium-microbial frameworks: The significance of calathids for the middle Ordovician reefs in the Tarim Basin, northwestern China. Palaeogeogr Palaeoclimatol Palaeoecol 474:66–78

    Article  Google Scholar 

  • Li C, Shi W, Cheng M, Jin C, Algeo TJ (2020) The redox structure of Ediacaran and early Cambrian oceans and its controls. Sci Bull 65:2141–2149

    Article  CAS  Google Scholar 

  • Lin CS, Li ST, Liu JY, Qian YX, Luo H, Chen JQ, Peng L, Rui ZF (2011) Tectonic framework and palaeogeographic evolution of the Tarim Basin during the Palaeozoic major evolutionary stages. Acta Petrologica Sinica 27(1):210–218

    Google Scholar 

  • Liu JQ, Li Z, Huang JC, Yang L (2012) Distinct sedimentary environments and their influences on carbonate reservoir evolution of the Lianglitag Formation in the Tarim Basin, Northwest China. Sci China Earth Sci 55:1641–1655

    Article  CAS  ADS  Google Scholar 

  • Liu CG, Li GR, Wang DW, Liu YL, Luo MX, Shao XM (2016) Middle-Upper Ordovician (Darriwilian–Early Katian) positive carbon isotope excursions in the northern Tarim Basin, northwest China: Implications for stratigraphic correlation and paleoclimate. J Earth Sci 27(2):317–328

    Article  Google Scholar 

  • Lu ZY, Chen HH, Qing HR, Chi GX, Chen QL, You DH, Yin H, Zhang SY (2017) Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim basin, NW China: Implications for the nature and timing of silicification. Sed Geol 359:29–43

    Article  CAS  Google Scholar 

  • Lucia FJ (2007) Carbonate reservoir characterization: an integrated approach. Springer, Berlin, p 336

    Google Scholar 

  • Ma YS, Cai XY, Yun L, Li ZJ, Li HL, Deng S, Zhao PR (2022) Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China. Pet Explor Develop 49(1):1–17

    Article  Google Scholar 

  • Mancini EA, Llins JC, Parcell WC, Aurell M, Bdenas B, Leinfelder RR, Benson DJ (2004) Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico. AAPG Bull 88(11):1573–1602

    Article  Google Scholar 

  • Marchionda E, Deschamps R, Cobianchi M, Nader FH, Di Giulio A, Morad DJ, Al Darmaki F, Ceriani A (2018) Field-scale depositional evolution of the Upper Jurassic Arab Formation (onshore Abu Dhabi, UAE). Mar Pet Geol 89:350–369

    Article  Google Scholar 

  • Mehrabi H, Rahimpour-Bonab H, Hajikazemi E, Jamalian A (2015) Controls on depositional facies in Upper Cretaceous carbonate reservoirs in the Zagros area and the Persian Gulf, Iran. Facies 61(4):23. https://doi.org/10.1007/s10347-015-0450-8

    Article  Google Scholar 

  • Meng XH, Ge M, Tucker ME (1997) Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sed Geol 114:189–222

    Article  Google Scholar 

  • Moore CH, Wade WJ (2013) Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Elsevier 55:444

    Google Scholar 

  • Munnecke A, Calner M, Harper DA, Servais T (2010) Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeogr Palaeoclimatol Palaeoecol 296(3):389–413

    Article  Google Scholar 

  • Nielsen AT (2004) Ordovician sea level changes: a Baltoscandian perspective. In: Webby BD, Droser ML, Paris F, Percival IG (eds) The Great Ordovician Biodiversification Event. Columbia University Press, New York, pp 84–93

    Chapter  Google Scholar 

  • Osleger D, Read JF (1991) Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, USA. J Sediment Petrol 61(7):1225–1252

    Google Scholar 

  • Overstreet RB, Oboh-Ikuenobe FE, Gregg JM (2003) Sequence stratigraphy and depositional facies of Lower Ordovician cyclic carbonate rocks, southern Missouri, USA. J Sediment Res 73(3):421–433

    Article  Google Scholar 

  • Pomar L (2001) Ecological control of sedimentary accommodation: evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeogr Palaeoclimatol Palaeoecol 175(1):249–272

    Article  Google Scholar 

  • Qi LX (2016) Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole Uplift, Tarim Basin. China Pet Explor 21(3):38–51

    Google Scholar 

  • Qi LX (2020) Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin. China Pet Explor 25(1):102–111

    Google Scholar 

  • Qiao ZF, Shen AJ, Zheng JF, Hu J, Wu XN, Lu JM (2012) Classification and origin of the Lower Ordovician dolostone in Tarim Basin. J Palaeogeogr 14(1):21–32

    Google Scholar 

  • Read JF, Goldhammer RK (1988) Use of Fischer plots to define third-order sea-level curves in Ordovician peritidal cyclic carbonates, Appalachians. Geology 16:895–899

    Article  ADS  Google Scholar 

  • Reijmer JJG (2021) Marine carbonate factories: Review and update. Sedimentology 68(5):1729–1796

    Article  Google Scholar 

  • Rong H, Jiao Y, Wu L, Wang R, Gu Y, Wang XM (2013) Architecture and evolution of calciclastic marginal slope fans of the Ordovician carbonate platform in the Yijianfang outcrop of the Bachu area, west Tarim Basin. AAPG Bull 97(10):1657–1681

    Article  Google Scholar 

  • Ross CA, Ross JRP (1995) North American depositional sequences and correlations. In: Cooper JD, Droser ML, Finney SC (eds), Ordovician Odyssey: Proceedings of 7th International Symposium on the Ordovician System: Pacific Section. Society of Economic Paleontologists and Mineralogists, vol 77, Califoria, Fullerton, pp 309–313

  • Schlager W (2003) Benthic carbonate factories of the Phanerozoic. Int J Earth Sci 92:445–464

    Article  CAS  Google Scholar 

  • Scotese CR, McKerrow WS (1990) Revised world maps and introduction. In: McKerrow WS, Scotese CR (eds), Paleozoic Paleogeography and Biogeography. vol 12, Geological Society, London, Memoirs, pp 1–21

  • Su W (2007) Ordovician sea-level changes: evidence from the Yangtze Platform. Acta Palaeontologica Sinica 46(Supplement):471–476

    Google Scholar 

  • Trotter JA, Williams IS, Barnes CR, Lécuyer C, Nicoll RS (2008) Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550–554

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tucker ME, Garland J (2010) High-frequency cycles and their sequence stratigraphic context: orbital forcing and tectonic controls on Devonian cyclicity, Belgium. Geol Belg 13(3):213–240

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate Sedimentology. Blackwell Scientific Publication, Oxford, p 482

    Book  Google Scholar 

  • Wang G, Zhang YF, Yang LM, Wang ZY, Li Y (2011) Transgressive sequences throughout the Yijianfang Formation (Darriwilian, Middle Ordovician) at Well Gucheng 4, Tarim Block, NW China. Acta Micropalaeontologica Sinica 28:137–143

    Google Scholar 

  • Wang JP, Li Y, Zhang YY, Kershaw S (2016) A Middle Ordovician (Darriwilian) Calathium reef complex on the carbonate ramp of the northwestern Tarim Block, northwest China: A sedimentological approach. Palaeogeogr Palaeoclimatol Palaeoecol 474:58–65

    Article  Google Scholar 

  • Webby BD, Cooper RA, Bergstrom SM, Paris F (2004) Stratigraphic framework and time slices. In: Webby BD, Paris F, M.L. D, Percival IG (eds), The Great Ordovician biodiversification event. Columbia University Press, New York, pp 124–146

  • Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Zamani-Pedram M (2010) Facies analysis of a large-scale Jurassic shelf-lagoon: the Kamar-e-Mehdi Formation of east-central Iran. Facies 56(1):59. https://doi.org/10.1007/s10347-009-0190-8

    Article  Google Scholar 

  • Woo J, Chough SK (2007) Depositional processes and sequence stratigraphy of the Jigunsan Formation (Middle Ordovician), Taebaeksan Basin, mideast Korea: implications for basin geometry and sequence development. Geosci J 11:331–355

    Article  Google Scholar 

  • Wu ZJ, Yao JX, Chen LQ (2012) Ordovician sequence stratigraphy of Keping area, Tarim Basin. Acta Petrologica Et Mineralogica 31(6):875–884

    Google Scholar 

  • Yeasmin R, Chen DZ, Fu Y, Wang JG, Guo ZH, Guo C (2017) Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China. J Asian Earth Sci 134:365–386

    Article  ADS  Google Scholar 

  • You DH, Cao ZC, Xu MJ, Qian YX, Wang S, Wang XL (2020) Genetic mechanism of multi-type dolomite reservoirs in Ordovician Yingshan Formation, Tarim Basin. Oil Gas Geol 41(1):92–101

    Google Scholar 

  • Yu RL, Fu H (2006) Influence of tectonic movement on Ordovician carbonate of the Tahe oil field. Nat Gas Explor Develop 29(2):1–5

    Google Scholar 

  • Zenger DH, Dunham JD, Ethington RL (1980) Concepts and Models of Dolomitization. SEPM Spec Public 28:320

    Google Scholar 

  • Zhang YD, Munnecke A (2016) Ordovician stable carbon isotope stratigraphy in the Tarim Basin, NW China. Palaeogeogr Palaeoclimatol Palaeoecol 458:154–175

    Article  Google Scholar 

  • Zhang YQ, Chen DZ, Zhou XQ, Guo ZH, Wei WW, Mutti M (2015) Depositional facies and stratal cyclicity of dolomites in the Lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, NW China. Facies 61(1):417. https://doi.org/10.1007/s10347-014-0417-1

    Article  Google Scholar 

  • Zhao ZJ, Zhao ZX, Huang ZB (2006) Ordovician conodont zones and sedimentary sequences of the Tarim Basin, Xinjiang, NW China. J Stratigr 30(3):193–203

    Google Scholar 

  • Zhao ZJ, Pan WQ, Zhang LJ, Deng SW, Huang ZB (2009) Sequence stratigraphy in the Ordovician in the Tarim Basin. Geotecton Metallog 33(1):175–188

    Google Scholar 

  • Zhu DY, Jin ZJ, Hu WX (2010) Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin. Sci China Earth Sci 40(2):156–170

    Google Scholar 

  • Zhu DY, Meng QQ, Jin ZJ, Liu QY, Hu WX (2015) Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin, northwestern China. Mar Pet Geol 59:232–244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks go to Northwest Oilfield Company, SINOPEC for support for this project and for facilitating access to data in the Shuntuoguole Low Uplift (Tarim Basin). We would like to thank two anonymous reviewers for their constructive and critical comments on the previous manuscript and the Chief Editor Maurice Tucker for his patience in handling this paper and inspiring comments, leading to the significant improvement of the manuscript. This project was jointly supported by Guizhou Provincial Science and Technology Projects (Grant No. ZK[2021] ordinary 199), Newly Established Project by the Ministry of Science and Technology of Sinopec (Grant No. P23078), the Cultivation Project of Guizhou University (Grant No. [2019]68) and Autonomous Region Tianshan Talent Program-Excellent Engineer Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Guo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Chen, D., Cao, Z. et al. Facies analysis and depositional evolution of Lower–Middle Ordovician carbonates in the Shuntuoguole Low Uplift of Tarim Basin (NW China). Facies 70, 2 (2024). https://doi.org/10.1007/s10347-023-00676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-023-00676-5

Keywords

Navigation