Skip to main content

Advertisement

Log in

Oncoids and groundwater calcrete in a continental siliciclastic succession in a fault-controlled basin (Early Permian, Northern Italy)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Lower Permian continental deposits of the fault-controlled Orobic Basin (Central Southern Alps; Northern Italy) include alluvial fan facies interfingering with muddy basin-floor deposits, consisting of three facies associations: heterolithic fine-grained siliciclastic facies, laminated sandstone facies, and oncoidal limestone facies. Besides oncoidal and microbial limestones, carbonates occur as nodules in sandy tabular beds within the laminated sandstone facies association. Microfacies analyses distinguish several types of oncoidal carbonate (consisting of an alternation of microbial carbonate and fibrous calcite) and carbonate nodules. Each type of carbonate has been characterized in terms of δ18O and δ13C. The two types of carbonate in the oncoids record a stable δ18O and a slightly varying δ13C, whereas the isotope composition of the calcite in nodules is completely different. Carbonate nodules in sandy beds of the laminated sandstone facies association have a diagenetic origin as indicated by cross-cutting relationships between nodules and lamination; the nodules are interpreted as groundwater calcrete, formed in the subsurface at the top of the unconfined water table. The exclusive sedimentation of oncoidal carbonate facies within siliciclastic deposits indicates that when oncoids were formed in ephemeral shallow ponds, siliciclastic input was minimal. The sedimentological and geochemical characteristics of the studied succession and the stable isotopic composition of the oncoids (the absence of covariance between δ18O and δ13C excludes deposition in evaporating basins) indicate persistent stable conditions for sufficient time to permit growth of centimeter-sized oncoids. Oncoids are interpreted to have formed in spring-fed ponds and outflow channels, with flowing, clean water, at the toe of major alluvial fans. Episodes of rapid delivery of sand and silt-sized sediments by flash floods, with an oscillating water table, caused the observed facies alternation. The precipitation of calcareous cements close to the water table surface produced nodules in sandy layers. Carbonate precipitation within laminated sandstone reduced porosity and permeability, causing a strong compartmentalization in the well-bedded continental succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

From Berra and Felletti (2011)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso-Zarza AM (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth Sci Rev 60(3–4):261–298

    Article  Google Scholar 

  • Arakel AV (1991) Evolution of Quaternary duricrusts in Karinga Creek drainage system, central Australian groundwater discharge zone. Aust J Earth Sci 38(3):332–347

    Article  Google Scholar 

  • Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in Southern Europe and Northern Africa: results of a right lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320

    Article  Google Scholar 

  • Berra F, Felletti F (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sed Geol 235(3):249–263

    Article  Google Scholar 

  • Berra F, Tiepolo M, Caironi V, Siletto GB (2015) U-Pb zircon geochronology of the volcanic deposits from the Permian basin of the Orobic Alps (Southern Alps, Lombardy): chronostratigraphic and geological implications. Geol Mag 152:429–443

    Article  Google Scholar 

  • Berra F, Felletti F, Tessarollo A (2016) Stratigraphic architecture of a transtensional continental basin in low-latitude semiarid conditions: the permian succession of the Central Orobic Basin (Southern Alps, Italy). J Sediment Res 86(4):408–429

    Article  Google Scholar 

  • Beverly EJ, Driese SG, Peppe DJ, Johnson CR, Michel LA, Faith JT, Tryon CA, Sharp WD (2015) Recurrent spring-fed rivers in a Middle to Late Pleistocene semi-arid grassland: implications for environments of early humans in the Lake Victoria Basin, Kenya. Sedimentology 62(6):1611–1635

    Article  Google Scholar 

  • Cadel G, Cosi M, Pennacchioni G, Spalla MI (1996) A new map of the Permo-Carboniferous cover and Variscan metamorphic basement in the Central Orobic Alps, Southern Alps-Italy: structural and stratigraphical data. Memorie di Scienze Geologiche di Padova 48:1–53

    Google Scholar 

  • Cannizzaro C, Venerandi I, Zuffardi P (1984) Iron preconcentration in stromatolites/oncolites: an example from the Lower Permian of the Central Alps. In: Syngenesis and epigenesis in the formation of mineral deposits, pp 342–349

    Chapter  Google Scholar 

  • Casati P (1969) Strutture della formazione di Collio (Permiano inferiore) nelle Alpi Orobie. Natura 60:301–312

    Google Scholar 

  • Casati P, Gnaccolini M (1967) Geologia delle Alpi Orobie occidentali. Riv Ital Paleontol Stratigr 73:25–162

    Google Scholar 

  • Cassinis G, Massari F, Neri C, Venturini C (1988) The continental Permian in the Southern Alps (Italy). A review. Zeitschrift fur Geologische Wissenschaften 16:1117–1126

    Google Scholar 

  • Cassinis G, Perotti C, Ronchi A (2012) Permian continental basins in the Southern Alps (Italy) and peri-mediterranean correlations. Int J Earth Sci 101:129–157

    Article  Google Scholar 

  • Davison I (2007) Geology and tectonics of the South Atlantic Brazilian salt basins. Geol Soc Lond Spec Publ 272(1):345–359

    Article  Google Scholar 

  • De Sitter LU, de Sitter-Koomans CM (1949) The Geology of the Bergamasc Alps Lombardia Italy. Leidse Geol Meded 14(2):1–257

    Google Scholar 

  • Della Porta G (2015) Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature. Geol Soc Lond Spec Publ 418:17–68

    Article  Google Scholar 

  • Della Porta G, Croci A, Marini M, Kele S (2017) Depositional architecture, facies character and geochemical signature of the Tivoli travertines (Pleistocene, Acque Albule Basin, Central Italy). Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) 123(3):487–540

    Google Scholar 

  • Forcella F, Sciunnach D, Siletto GB (2001) The Lower Permian in the Orobic Anticlines (Lombardy Southern Alps): criteria for field mapping towards a stratigraphic revision of the Collio Formation. In: Cassinis G (ed) Permian continental deposits of Europe and other areas. Unravelled

  • Freytet P, Verrecchia EP (1999) Calcitic radial palisadic fabric in freshwater stromatolites: diagenetic and recrystallized feature or physicochemical sinter crust? Sediment Geol 126:97–102

    Article  Google Scholar 

  • Freytet P, Verrecchia EP (2002) Lacustrine and palustrine carbonate petrography: an overview. J Paleolimnol 27(2):221–237

    Article  Google Scholar 

  • Freytet P, Kerp H, Broutin J (1996) Permian freshwater stromatolites associated with the conifer shoots Cassinisia orobica Kerp et al.: a very peculiar type of fossilization. Rev Palaeobot Palynol 91:85–105

    Article  Google Scholar 

  • Freytet P, Toutin-Morin N, Broutin J, Debriette P, Durand M, El Wartiti M, Gand G, Kerp H, Orszag F, Paquette Y, Ronchi A, Sarfati J (1999) Palaeoecology of non marine algae and stromatolites: Permian of France and adjacent countries. Ann Paléontol 85:99–153

    Article  Google Scholar 

  • ISPRA (2012a) Foglio 077 Clusone. Carta Geologica d’Italia alla scala 1(50):000

    Google Scholar 

  • ISPRA (2012b) Foglio 056 Sondrio. Carta Geologica d’Italia alla scala 1(50):000

    Google Scholar 

  • Jones B, Renaut RW (1994) Crystal fabrics and microbiota in large pisoliths from Laguna Pastos Grandes, Bolivia. Sedimentology 41(6):1171–1202

    Article  Google Scholar 

  • Karcz I (1972) Sedimentary structures formed by flash floods in southern Israel. Sediment Geol 7(3):161–182

    Article  Google Scholar 

  • Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quatern Sci Rev 23(7–8):811–831

    Article  Google Scholar 

  • Mack GH, Cole D, Trevino L (2000) The distribution and discrimination of shallow, authigenic carbonate in the Pliocene-Pleistocene Palomas Basin, southern Rio Grande rift. Geol Soc Am Bull 112:643–656

    Article  Google Scholar 

  • Mann AW, Horwitz RC (1979) Groundwater calcrete deposits in Australia some observations from Western Australia. J Geol Soc Aust 26:293–303

    Article  Google Scholar 

  • Marchetti L, Ronchi A, Santi G, Voigt S (2015) The Gerola Valley site (Orobic Basin, Northern Italy): a key for understanding late early Permian tetrapod ichnofaunas. Palaeogeogr Palaeoclimatol Palaeoecol 439:97–116

    Article  Google Scholar 

  • Marchetti L, Tessarollo A, Felletti F, Ronchi A (2017) Tetrapod footprint paleoecology: behavior, taphonomy and ichnofauna disentangled. a case study from the Lower Permian of the Southern Alps (Italy). Palaios 32(8):506–527

    Article  Google Scholar 

  • Muttoni G, Kent DV, Garzanti E, Brack P, Abrahamsen N, Gaetani M (2003) Early Permian Pangea ‘‘B’’ to Late Permian Pangea ‘‘A’’. Earth Planet Sci Lett 215:379–394

    Article  Google Scholar 

  • Nehza O, Woo KS, Lee KC (2009) Combined textural and stable isotopic data as proxies for the mid-Cretaceous paleoclimate: a case study of lacustrine stromatolites in the Gyeongsang Basin, SE Korea. Sediment Geol 214(1):85–99

    Article  Google Scholar 

  • Nicosia U, Ronchi A, Santi G (2001) Tetrapod footprints from the Lower Permian of western Orobic Basin (N. Italy).” Permian continental deposits of Europe and other areas. Regional reports and correlations. Nat Brescia 25:45–50

    Google Scholar 

  • Petti FM, Bernardi M, Ashley-Ross MA, Berra F, Tessarollo A, Avanzini M (2014) Transition between terrestrial-submerged walking and swimming revealed by Early Permian amphibian trackways and a new proposal for the nomenclature of compound trace fossil. Palaeogeogr Palaeoclimatol Palaeoecol 410:278–289

    Article  Google Scholar 

  • Renaut RW, Gierlowski-Kordesch EH, Dalrymple R, James N (2010) Lakes. Facies Models 4:541–575

    Google Scholar 

  • Risacher F, Eugster HP (1979) Holocene pisoliths and encrustations associated with spring-fed surface pools, Pastos Grandes, Bolivia. Sedimentology 26:253–270

    Article  Google Scholar 

  • Ronchi A, Santi G (2003) Non-marine biota from the Lower Permian of the central Southern Alps (Orobic and Collio basins, N Italy): a key to the paleoenvironment. Geobios 36:749–760

    Article  Google Scholar 

  • Ronchi A, Santi G, Confortini F (2005) Biostratigraphy and facies in the continental deposits of the central Orobic Basin: a key section in the Lower Permian of the Southern Alps (Italy). In: Lucas SG, Ziegler K (eds) The Nonmarine Permian, vol 30. New Mexico Museum of Natural History and Sciences, Bulletin, Albuquerque, pp 273–281

    Google Scholar 

  • Schreiber BC, Smith DB, Schreiber E (1981) Spring peas from New York State; nucleation and growth of fresh water hollow ooliths and pisoliths. J Sediment Res 51:1341–1346

    Google Scholar 

  • Sciunnach D (2001) The Lower Permian in the Orobic Anticline (Southern Alps, Lombardy): a review based on new stratigraphic data. Riv Ital Paleontol Stratigr 101:47–68

    Google Scholar 

  • Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol Isotope Geosci Sect 80(4):261–279

    Article  Google Scholar 

  • Talbot MR, Kelts K (1990). Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon‐rich lacustrine sediments. In: Katz BJ (ed) Lacustrine basin exploration: case studies and modern analogs, vol 50. AAPG Mem., pp 88–112

  • Thompson DL, Stilwell JD, Hall M (2015) Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: pre-salt coquinas of Brazil and West Africa. Gondwana Res 28(1):26–51

    Article  Google Scholar 

  • Valero Garcés BL (1993) Lacustrine deposition and related volcanism in a transtensional tectonic setting: upper Stephanian-Lower Autunian in the Aragón-Béarn basin, western Pyrenees (Spain-France). Sediment Geol 83:133–160

    Article  Google Scholar 

  • Valero Garcés BL, Gierlowski-Kordesch E, Bragonier WA (1997) Pennsylvanian continental cyclothem development: no evidence of direct climatic control in the Upper Freeport Formation (Allegheny Group) of Pennsylvania (northern Appalachian Basin). Sediment Geol 109(3–4):305–319

    Article  Google Scholar 

  • Winsborough BM, Seeler JS, Golubic S, Folk RL, Maguire B Jr (1994) Recent fresh-water lacustrine stromatolites, stromatolitic mats and oncoids from northeastern Mexico. In Phanerozoic stromatolites II. Springer, Netherlands, pp 71–100

    Chapter  Google Scholar 

  • Wright VP (2012) Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition. Geol Soc Lond Spec Publ 370:SP370-2

    Article  Google Scholar 

  • Zanchi A, Zanchetta S, Berio L, Berra F, Felletti F (2019) Low-angle normal faults record Early Permian extensional tectonics in the Orobic Basin (Southern Alps, N Italy). Ital J Geosci 138:184–201. https://doi.org/10.3301/ijg.2018.35

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ausonio Ronchi and Michal Gradziński for the detailed and careful comments that helped us in clarifying and improving the first version of this paper. We also would like to thank the Editor of Facies, Maurice Tucker, for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Berra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berra, F., Felletti, F. & Tessarollo, A. Oncoids and groundwater calcrete in a continental siliciclastic succession in a fault-controlled basin (Early Permian, Northern Italy). Facies 65, 38 (2019). https://doi.org/10.1007/s10347-019-0580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-019-0580-5

Keywords

Navigation