Skip to main content
Log in

Spatial and morphometric relationships of submarine landslides offshore west and southwest Iberia

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Submarine landslides are a ubiquitous geohazard in the marine environment and occur at multiple scales. Increasing efforts have been made during the last decade to catalogue and categorise submarine landslides in comprehensive databases, aiming to better understand their preconditioning and trigger factors. Using the recently compiled, open-access MAGICLAND dataset, we investigate the distribution and morphometric trends of submarine landslides observed in seven distinct geomorphologic domains offshore west and southwest Iberia. Higher densities of submarine landslides occur on the proximal regions of the south and southwestern margins of the study area. These regions are located adjacent to or coincident with higher density areas and clusters of earthquake epicentres. Submarine canyons are another major location for collapses which are particularly abundant at canyon mouths. However, significant numbers occur within all domains with pronounced relief, including distal regions hundreds of kilometres away from the foot of the continental slope. Landslide size range is inversely proportional to their spacing and frequency, a tendency observed within each domain on the whole study area. Positive correlations were obtained between the parameters analysed, but relationships between unidimensional parameters such as length and width exhibit lower correlation coefficients. Correlations between 2D and 3D parameters such as area and volume are stronger, supporting similar findings by other studies. The relationships obtained are, however, variable across domains, and the correlation values are influenced by the seafloor geomorphology. This work brings new insights on submarine landslide distribution in the understudied west and southwest Iberian continental margin, complements previous inventories made for nearby regions, and provides valuable data with wider applications for submarine landslide databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alves TM, Gawthorpe RL, Hunt DW, Monteiro JH (2003) Cenozoic tectono-sedimentary evolution of the western Iberian margin. Mar Geol 195:75–108. https://doi.org/10.1016/S0025-3227(02)00683-7

    Article  Google Scholar 

  • Arzola RG, Wynn RB, Lastras G et al (2008) Sedimentary features and processes in the Nazaré and Setúbal submarine canyons, west Iberian margin. Mar Geol 250:64–88

    Article  Google Scholar 

  • Badagola APL (2008) Evolução morfo-tectónica da plataforma continental do Esporão da Estremadura. University of Lisbon, Msc

    Google Scholar 

  • Blahůt J, Balek J, Klimeš J et al (2019) A comprehensive global database of giant landslides on volcanic islands. Landslides 16:2045–2052

    Article  Google Scholar 

  • Bryn P, Berg K, Forsberg CF et al (2005) Explaining the Storegga slide. Mar Pet Geol 22:11–19. https://doi.org/10.1016/j.marpetgeo.2004.12.003

    Article  Google Scholar 

  • Bugge T, Belderson RH, Kenyon NH, Falcon NL (1988) The Storegga slide. Philosophical Transactions of the Royal Society of London Series a, Mathematical and Physical Sciences 325:357–388. https://doi.org/10.1098/rsta.1988.0055

    Article  Google Scholar 

  • Camerlenghi A, Urgeles R, Fantoni L (2010) A Database on submarine landslides of the Mediterranean Sea. In: Mosher DC, Shipp RC, Moscardelli L et al (eds) Submarine Mass Movements and Their Consequences. Springer, pp 503–513

    Chapter  Google Scholar 

  • Casalbore D, Clementucci R, Bosman A et al (2020) Widespread mass-wasting processes off NE Sicily (Italy): insights from morpho-bathymetric analysis. In: Georgiopoulou A, Amy L, Benetti S et al (eds) Geological Society, London, Special Publications. Geological Society, London, Special Publications 500:393–403

  • Chaytor JD, ten Brink US, Solow AR, Andrews BD (2009) Size distribution of submarine landslides along the U.S. Atlantic Margin Marine Geology 264:16–27. https://doi.org/10.1016/j.margeo.2008.08.007

    Article  Google Scholar 

  • Clare M, Chaytor J, Dabson O et al (2019) A consistent global approach for the morphometric characterization of subaqueous landslides. In: Lintern DG, Mosher D, Moscardelli L,et al (eds) Subaqueous Mass Movements and Their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides. Geological Society, London, Special Publications 477:455–477

  • Clarke SL, Hubble TC, Miao G et al (2019) Eastern Australia’s submarine landslides: implications for tsunami hazard between Jervis Bay and Fraser Island. Landslides 16:2059–2085

    Article  Google Scholar 

  • Collico S, Arroyo M, Urgeles R et al (2020) Probabilistic mapping of earthquake-induced submarine landslide susceptibility in the South-West Iberian margin. Mar Geol 429:106296. https://doi.org/10.1016/j.margeo.2020.106296

    Article  Google Scholar 

  • Collot J-Y, Lewis K, Lamarche G, Lallemand S (2001) The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: result of oblique seamount subduction. Journal of Geophysical Research: Solid Earth 106:19271–19297

    Article  Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New York

    Google Scholar 

  • Duarte JC, Terrinha P, Rosas FM et al (2010) Crescent-shaped morphotectonic features in the Gulf of Cadiz (offshore SW Iberia). Mar Geol 271:236–249. https://doi.org/10.1016/j.margeo.2010.02.017

    Article  Google Scholar 

  • Ducassou E, Fournier L, Sierro FJ et al (2016) Origin of the large Pliocene and Pleistocene debris flows on the Algarve margin. Mar Geol 377:58–76. https://doi.org/10.1016/j.margeo.2015.08.018

    Article  Google Scholar 

  • EMODnet Bathymetry Consortium (2018) EMODnet Digital Bathymetry (DTM 2018)

  • Gamboa D, Alves TM (2016) Bi-modal deformation styles in confined mass-transport deposits: examples from a salt minibasin in SE Brazil. Mar Geol 379:176–193

    Article  Google Scholar 

  • Gamboa D, Alves TM, Omosanya KO (2019a) Style and morphometry of mass‐transport deposits across the Espírito Santo basin (Offshore SE Brazil). In: Ogata K, Festa A, Pini GA (eds) Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles. American Geophysical Union 227–246

  • Gamboa D, Barnes P, Bell R et al (2019b) Revisiting the giant Ruatoria debris flow on the Hikurangi Margin, New Zealand: results from IODP Expeditions 372 and 375, Site U1520. Geophys Res Abstr 21:1–1

    Google Scholar 

  • Gamboa D, Omira R (2021) The MAGICLAND submarine landslide database - offshore WSW Iberia. https://doi.org/10.17605/OSF.IO/S96RW

  • Gamboa D, Omira R, Piedade A, et al (2021a) Destructive episodes and morphological rejuvenation during the lifecycles of tectonically active seamounts: insights from the Gorringe Bank in the NE Atlantic. Earth Planet Sci Lett 559:116772

  • Gamboa D, Omira R, Terrinha P (2021b) A database of submarine landslides offshore west and southwest Iberia. Scientific Data 8:185. https://doi.org/10.1038/s41597-021-00969-w

    Article  Google Scholar 

  • García M, Hernández-Molina FJ, Llave E et al (2009) Contourite erosive features caused by the Mediterranean outflow water in the Gulf of Cadiz: Quaternary tectonic and oceanographic implications. Mar Geol 257:24–40

    Article  Google Scholar 

  • Geist EL, ten Brink US (2019) Offshore landslide hazard curves from mapped landslide size distributions. J Geophys Res Solid Earth 124:3320–3334. https://doi.org/10.1029/2018JB017236

    Article  Google Scholar 

  • Girardeau J, Cornen G, Agrinier P et al (1998) Preliminary results of Nautile dives on the Gorringe Bank (West Portugal). Comptes Rendus De L’academie Des Sciences Series IIA Earth and Planetary Science 4:247–254

    Google Scholar 

  • Gràcia E, Dañobeitia J, Vergés J et al (2003) Crustal architecture and tectonic evolution of the Gulf of Cadiz (SW Iberian margin) at the convergence of the Eurasian and African plates. Tectonics 22

  • Haflidason H, Sejrup HP, Nygård A et al (2004) The Storegga slide: architecture, geometry and slide development. Mar Geol 213:201–234. https://doi.org/10.1016/j.margeo.2004.10.007

    Article  Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Review of Geophysics 34:33–59

    Article  Google Scholar 

  • Harbitz CB, Løvholt F, Bungum H (2014) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72:1341–1374

    Article  Google Scholar 

  • Hernandez-Molina FJ, Llave E, Stow DAV et al (2006) The contourite depositional system of the Gulf of Cadiz: a sedimentary model related to the bottom current activity of the Mediterranean outflow water and its interaction with the continental margin. Deep-Sea Research Part II: Topical Studies in Oceanography 53:1420–1463

    Article  Google Scholar 

  • Hernández-Molina FJ, Sierro FJ, Llave E et al (2016) Evolution of the gulf of Cadiz margin and southwest Portugal contourite depositional system: tectonic, sedimentary and paleoceanographic implications from IODP expedition 339. Mar Geol 377:7–39. https://doi.org/10.1016/j.margeo.2015.09.013

    Article  Google Scholar 

  • Hernandez-Molina J, Llave E, Somoza L et al (2003) Looking for clues to paleoceanographic imprints: A diagnosis of the Gulf of Cadiz contourite depositional systems. Geology 31:19–22

    Article  Google Scholar 

  • Innocenti C, Battaglini L, D’Angelo S, Fiorentino A (2021) Submarine landslides: mapping the susceptibility in European seas. Q J Eng Geol Hydrogeol 54

  • Kim J, Løvholt F, Issler D, Forsberg CF (2019) Landslide material control on tsunami genesis—the Storegga slide and tsunami (8,100 Years BP). JJ Geophys Res Ocean 124:3607–3627. https://doi.org/10.1029/2018JC014893

    Article  Google Scholar 

  • Lee HJ (2009) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol 264:53–64. https://doi.org/10.1016/j.margeo.2008.09.009

    Article  Google Scholar 

  • León R, Urgeles R, Pérez-López R et al (2020) Geological and tectonic controls on morphometrics of submarine landslides of the Spanish margins. In: Georgiopoulou A, Amy LA, Benetti S et al (eds) Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments, Geological Society, London, Special Publications. Geological Society, London, Special Publications, pp 495–513

    Google Scholar 

  • Lo Iacono C, Gràcia E, Zaniboni F et al (2012) Large, deepwater slope failures: implications for landslide-generated tsunamis. Geology 40:931–934

    Article  Google Scholar 

  • Løvholt F, Pedersen G, Harbitz CB et al (2015) On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences 373:20140376. https://doi.org/10.1098/rsta.2014.0376

    Article  Google Scholar 

  • Løvholt F, Glimsdal S, Harbitz CB (2020) On the landslide tsunami uncertainty and hazard. Landslides 17:2301–2315. https://doi.org/10.1007/s10346-020-01429-z

    Article  Google Scholar 

  • Maldonado A, Somoza L, Pallarés L (1999) The Betic orogen and the Iberian-African boundary in the Gulf of Cadiz: geological evolution (central North Atlantic). Mar Geol 155:9–43. https://doi.org/10.1016/S0025-3227(98)00139-X

    Article  Google Scholar 

  • Marchés E, Mulder T, Cremer M et al (2007) Contourite drift construction influenced by capture of Mediterranean outflow water deep-sea current by the Portimão submarine canyon (Gulf of Cadiz, South Portugal). Mar Geol 242:247–260

    Article  Google Scholar 

  • Masson DG, Harbitz CB, Wynn RB et al (2006) Submarine landslides: processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society of London a: Mathematical, Physical and Engineering Sciences 364:2009–2039

    Google Scholar 

  • McAdoo BG, Watts P (2004) Tsunami hazard from submarine landslides on the Oregon continental slope. Mar Geol 203:235–245

    Article  Google Scholar 

  • Medialdea T, Vegas R, Somoza L et al (2004) Structure and evolution of the “Olistostrome” complex of the Gibraltar Arc in the Gulf of Cadiz (eastern Central Atlantic): evidence from two long seismic cross-sections. Mar Geol 209:173–198

    Article  Google Scholar 

  • Merle R, Jourdan F, Girardeau J (2018) Geochronology of the Tore-Madeira Rise seamounts and surrounding areas: a review. Aust J Earth Sci 65:591–605. https://doi.org/10.1080/08120099.2018.1471005

    Article  Google Scholar 

  • Micallef A, Berndt C, Masson DG, Stow DA (2008) Scale invariant characteristics of the Storegga slide and implications for large-scale submarine mass movements. Mar Geol 247:46–60

    Article  Google Scholar 

  • Migeon S, Cattaneo A, Hassoun V et al (2011) Morphology, distribution and origin of recent submarine landslides of the Ligurian Margin (North-western Mediterranean): some insights into geohazard assessment. Marine Geophysical Research 32:225–243

    Article  Google Scholar 

  • Miramontes E, Garziglia S, Sultan N et al (2018) Morphological control of slope instability in contourites: a geotechnical approach. Landslides 15:1085–1095

    Article  Google Scholar 

  • Montenat C, Guery F, Jamet M, Berthou, YB (1998) Mesozoic evolution of the Lusitanian Basin: comparison with the adjacent margin. In: Boillot, G., Winterer, L. L., et al. (eds) Proc. ODP, Sci. Results. College Station, TX (Ocean Drilling Program), pp 757–775

  • Moore JG, Clague DA, Holcomb RT et al (1989) Prodigious submarine landslides on the Hawaiian Ridge. Journal of Geophysical Research: Solid Earth 94:17465–17484. https://doi.org/10.1029/JB094iB12p17465

    Article  Google Scholar 

  • Moscardelli L, Wood L (2008) New classification system for mass transport complexes in offshore Trinidad. Basin Res 20:73–98

    Article  Google Scholar 

  • Moscardelli L, Wood L (2016) Morphometry of mass-transport deposits as a predictive tool. Geol Soc Am Bull 128:47–80. https://doi.org/10.1130/B31221.1

    Article  Google Scholar 

  • Mosher DC, Shimeld JW, Hutchinson DR, Jackson HR (2016) Canadian UNCLOS extended continental shelf program seismic data holdings (2006–2011). Geological Survey of Canada, Open File 7938

  • Mougenot D, Kidd RB, Mauffret A et al (1984) Geological interpretation of combined SEABEAM, GLORIA and seismic data from Porto and Vigo Seamounts, Iberian continental margin. Mar Geophys Res 6:329–363. https://doi.org/10.1007/BF00286249

    Article  Google Scholar 

  • Omira R, Ramalho I, Terrinha P et al (2016) Deep-water seamounts, a potential source of tsunami generated by landslides? The Hirondelle Seamount, NE Atlantic. Mar Geol 379:267–280

    Article  Google Scholar 

  • Pinheiro LM, Ivanov MK, Sautkin A et al (2003) Mud volcanism in the Gulf of Cadiz: results from the TTR-10 cruise. Mar Geol 195:131–151. https://doi.org/10.1016/S0025-3227(02)00685-0

    Article  Google Scholar 

  • Pinheiro LM, Wilson RCL, Pena dos Reis R, et al (1996) The western Iberia margin: a geophysical and geological overview. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proceedings of the Ocean Drilling Program Scientific Results. National Science Foundation 3–26

  • Pope EL, Talling PJ, Urlaub M et al (2015) Are large submarine landslides temporally random or do uncertainties in available age constraints make it impossible to tell? Mar Geol 369:19–33. https://doi.org/10.1016/j.margeo.2015.07.002

    Article  Google Scholar 

  • Purdy GM (1975) The eastern end of the Azores-Gibraltar plate boundary. Geophys J Int 43:973–1000. https://doi.org/10.1111/j.1365-246X.1975.tb06206.x

    Article  Google Scholar 

  • Roque AC, Terrinha P, Lourenço N, Abreu M (2009) Morphostructure of the Tore seamount and evidences of recent tectonic activity (West Iberia Margin). In 6º Simposio sobre el Margen Ibérico Atlántico, MIA 09

  • Ryan WBF, Carbotte SM, Coplan J et al (2009) Global multi-resolution topography (GMRT) synthesis data set. Geochem Geophys Geosyst 10:Q03014. https://doi.org/10.1029/2008GC002332

    Article  Google Scholar 

  • Schulten I, Mosher DC, Piper DJW, Krastel S (2019) A massive slump on the St. Pierre slope, a new perspective on the 1929 grand banks submarine landslide. J Geophys Res Solid Earth 124:7538–7561. https://doi.org/10.1029/2018JB017066

    Article  Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: Characteristics of source areas, deposits, and associated eruptions. J Volcanol Geoth Res 22:163–197. https://doi.org/10.1016/0377-0273(84)90002-7

    Article  Google Scholar 

  • Silva PF, Roque C, Drago T et al (2020) Multidisciplinary characterization of Quaternary mass movement deposits in the Portimão Bank (Gulf of Cadiz, SW Iberia). Mar Geol 420:106086. https://doi.org/10.1016/j.margeo.2019.106086

    Article  Google Scholar 

  • Silva S, Terrinha P, Matias L et al (2017) Micro-seismicity in the Gulf of Cadiz: is there a link between micro-seismicity, high magnitude earthquakes and active faults? Tectonophysics 717:226–241

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. CRC Press

    Google Scholar 

  • Stow DAV, Hernández-Molina FJ, Llave E et al (2013) The Cadiz Contourite Channel: sandy contourites, bedforms and dynamic current interaction. Mar Geol 343:99–114. https://doi.org/10.1016/j.margeo.2013.06.013

    Article  Google Scholar 

  • ten Brink US, Andrews BD, Miller NC (2016) Seismicity and sedimentation rate effects on submarine slope stability. Geology 44:563–566. https://doi.org/10.1130/G37866.1

    Article  Google Scholar 

  • ten Brink US, Barkan R, Andrews BD, Chaytor JD (2009) Size distributions and failure initiation of submarine and subaerial landslides. Earth Planet Sci Lett 287:31–42

    Article  Google Scholar 

  • ten Brink US, Geist EL (2021) On the use of statistical analysis to understand submarine landslide processes and assess their hazard. In: Sassa K, Mikoš M, Sassa S et al (eds) Understanding and Reducing Landslide Disaster Risk, vol 1. Sendai Landslide Partnerships and Kyoto Landslide Commitment. Springer International Publishing, Cham, pp 329–341

    Chapter  Google Scholar 

  • Terrinha P, Matias L, Vicente J et al (2009) Morphotectonics and strain partitioning at the Iberia-Africa plate boundary from multibeam and seismic reflection data. Mar Geol 267:156–174. https://doi.org/10.1016/j.margeo.2009.09.012

    Article  Google Scholar 

  • Terrinha P, Medialdea T, Batista L, et al (2020) Integrated thematic geological mapping of the Atlantic Margin of Iberia. Geological Society, London, Special Publications 505:SP505–2019–90. https://doi.org/10.1144/SP505-2019-90

  • Terrinha P, Pinheiro LM, Henriet JP et al (2003) Tsunamigenic-seismogenic structures, neotectonics, sedimentary processes and slope instability on the southwest Portuguese Margin. Mar Geol 195:55–73

    Article  Google Scholar 

  • Terrinha P, Ramos A, Neres M et al (2019) The Alpine Orogeny in the west and southwest Iberia margins. In: Quesada C, Oliveira J (eds) The Geology of Iberia: A Geodynamic Approach. Springer, Regional Geology Reviews, pp 487–505

    Chapter  Google Scholar 

  • Tortella D, Torne M, Pérez-Estaún A (1997) Geodynamic evolution of the eastern segment of the Azores-Gibraltar zone: the Gorringe Bank and the Gulf of Cadiz region. Mar Geophys Res 19:211–230

    Article  Google Scholar 

  • Twichell DC, Chaytor JD, ten Brink US, Buczkowski B (2009) Morphology of late Quaternary submarine landslides along the U.S. Atlantic Continental Margin Marine Geology 264:4–15. https://doi.org/10.1016/j.margeo.2009.01.009

    Article  Google Scholar 

  • Urgeles R, Camerlenghi A (2013) Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution. J Geophys Res Earth Surf 118:2600–2618

    Article  Google Scholar 

  • Vázquez JT, Medialdea T, Ercilla G et al (2008) Cenozoic deformational structures on the Galicia bank region (NW Iberian continental margin). Mar Geol 249:128–149. https://doi.org/10.1016/j.margeo.2007.09.014

    Article  Google Scholar 

  • Ward SN, Day S (2001) Cumbre Vieja volcano—potential collapse and tsunami at La Palma, Canary Islands. Geophys Res Lett 28:3397–3400

    Article  Google Scholar 

  • Watson SJ, Mountjoy JJ, Crutchley GJ (2020) Tectonic and geomorphic controls on the distribution of submarine landslides across active and passive margins, eastern New Zealand. Geological Society, London, Special Publications 500:477–494. https://doi.org/10.1144/SP500-2019-165

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the project MAGICLAND – MArine Geo-hazards InduCed by underwater LANDslides in the SW Iberian Margin (Ref: PTDC/CTA-GEO/30381/2017), and by project UIDB/50019/2020 – IDL, both funded by the Fundação para a Ciência e Tecnologia (FCT), Portugal. We acknowledge the support provided by IPMA´s SeisLab and by the C4G project. The authors thank the comments, insights, and support provided by the editor and the two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Gamboa.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 25 KB)

Supplementary file2 (XLSX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamboa, D., Omira, R. & Terrinha, P. Spatial and morphometric relationships of submarine landslides offshore west and southwest Iberia. Landslides 19, 387–405 (2022). https://doi.org/10.1007/s10346-021-01786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01786-3

Keywords

Navigation