Skip to main content
Log in

Seismic wave propagation characteristic and its effects on the failure of steep jointed anti-dip rock slope

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Discontinuities, such as joints and beddings, usually play a significant role in the seismic response and corresponding failure process of slopes, especially for anti-dip rock slide according to field observations. Shaking table tests associated with numerical analyses are carried out in this paper to explore the effect of seismic wave on response of jointed anti-dip rock slopes. Shaking table tests involve anti-dip rock slope models with different rock types and different excitation intensities. Ten accelerometers are installed inside each slope model to monitor the dynamic response and spectrum shifting characteristics. It is found that the area of failure zone in the soft rock anti-dip slope is approximate 1.5 times the size of that in the hard rock anti-dip slope. Meanwhile, the width and ridge number of the fast Fourier-transformation spectrum along the slope surface can reveal the internal damage features within the anti-dip rock slopes, and the multiple failure planes can also be recognized according to the variation of distance between the innermost and outermost ridges in the fast Fourier-transformation spectrum. Moreover, the distinct element method incorporating a damage model is used to interpret the test results and to identify the main influencing factors for seismic instability. It is found that the failure pattern of a jointed anti-dip rock slope is more sensitive to bedding inclination than to joint inclination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

Download references

Acknowledgements

The authors appreciate the editors and reviewers for their comments on our manuscript.

Funding

The present study was financially supported by the National Natural Science Foundation of China (Grant Nos. 41502299, 41372306) as well as Research Planning of Sichuan Education Department, China (Grant No. 16ZB0105), State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No. SKLGP2016Z007), Chengdu University of Technology Young and Middle-Aged Backbone Program (Grant No. KYGG201720), Sichuan provincial science and technology department program (Grant No. 19YYJC2087), and China Scholarship Council Project (Grant No. 201708515101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng-pan Ju.

Additional information

The published version of this article, unfortunately, contained error. A compass went unconverted in the upper-right corner of Figure 1. Given in this article is the correct image.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Lq., Ju, Np., Zhang, S. et al. Seismic wave propagation characteristic and its effects on the failure of steep jointed anti-dip rock slope. Landslides 16, 105–123 (2019). https://doi.org/10.1007/s10346-018-1071-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-1071-4

Keywords

Navigation