Skip to main content

Advertisement

Log in

Can vein-filling speleothems constrain the timing of deep-seated gravitational slope deformation? A case study from the Vinschgau (Italian Alps)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The steep, south facing slopes of the central Vinschgau (Val Venosta, South Tyrol, northern Italy) are characterized by deep-seated compound rockslides affecting 51 km2 and reaching beneath the Quaternary valley fill. Morphological features include double ridges, trenches, scarps, and counterscarps, whereby the extent of displacement rises from W to E. Near the toe of these slopes, abundant fractures are present whose orientation and spatial strongly suggest that they are related to the gravitational slope deformations. These fractures host carbonate speleothems which are associated with local tufa occurrences at the surface. Given that the metamorphic host rock is essentially carbonate-free, these carbonate deposits require extensive water-rock interactions to form. Modern springs along the toe of the slope are also mostly supersaturated with respect to calcite and locally also aragonite. The invariant chemical composition, very low tritium levels, and in particular the low oxygen isotope values indicate that this groundwater infiltrates at high elevation and is characterized by a long residence time. On the other hand, local infiltration in the lower reaches of the slope is very limited due to the semiarid climate and is incompatible with the measured groundwater stable isotope composition and the high degree of mineralization. We therefore propose a conceptual model which reconciles the deep-seated gravitational slope deformation with the occurrence of mineralized groundwater and associated carbonate precipitates in fractures near the toe of the slope. These deposits provide a means to place constraints on the timing of rock fracturing and hence the slope movements. U/Th dating of 34 samples from eight sites shows that speleothem deposition started 14.2 ka BP and occurred semi-continuously throughout the Holocene. Thus, gravitational displacements likely commenced with a lag of ~3–4 ka after the deglaciation of the valley, which is also consistent with the few available dates on the onset of other deep-seated slope deformations in the Alps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agliardi F, Crosta GB, Zanchi A (2001) Structural constrains on deep-seated slope deformations kinematics. Eng Geol 59:83–102

    Google Scholar 

  • Agliardi F, Crosta GB, Zanchi A, Ravazzi C (2009) Onset and timing of deep-seated gravitational slope deformations in the eastern alps, Italy. Geomorphology 103:113–129

    Google Scholar 

  • Agliardi F, Crosta GB, Frattini P, Malusà M (2013) Giant non-catastrophic landslides and the long-term exhumation of the European alps. Earth Planet Sci Lett 365:263–274

    Google Scholar 

  • Ambrosi C, Crosta GB (2006) Large sackung along major tectonic features in the central Italian alps. Eng Geol 83:183–200

    Google Scholar 

  • Ambrosi C, Crosta GB (2011) Valley shape influence on deformation mechanisms of rock slopes. Geol Soc Lond Spec Publ 351:215–233

    Google Scholar 

  • Atkinson BK (1984) Subcritical crack growth in geologic materials. J Geophys Res 89(B6):4077–4114

    Google Scholar 

  • Augustinus PC (1995) Rock mass strength and the stability of some glacial valley slopes. Geomorphol 39:55–68

    Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017

    Google Scholar 

  • Ballantyne CK, Sandeman GF, Stone JO, Wilson P (2014) Rock-slope failure following late Pleistocene deglaciation on tectonically stable mountainous terrain. Quat Sci Rev 86:144–157

    Google Scholar 

  • Barbarano M, Agliardi F, Crosta GB, Zanchi A (2015) Inherited and active tectonic controls on the Piz Dora DSGSD (Val Müstair, Switzerland). In: Lollino G et al (eds) Engineering Geology for Society and Territory, Volume 2: Landslide Processes. Springer, Berlin, pp 605–608

    Google Scholar 

  • Baroň I, Kernstocková M, Faridi M, Bubík M, Milovský R, Melichar R, Sabouri J, Babůrek J (2013) Paleostress analysis of a gigantic gravitational mass movement in active tectonic setting: the Qoshadagh slope failure, Ahar, NW Iran. Tectonophysics 605:70–87

    Google Scholar 

  • Bassetti M, Borsato A (2005) Evoluzione geomorfologica della Bassa Valle dell’Adige dall’Ultimo Massimo Glaciale: sintesi delle conoscenze e riferimenti ad aree limitrofe. Studi Trent Sci Nat Acta Geol 82:31–42

    Google Scholar 

  • Bigot-Cormier F, Braucher R, Bourlès D, Guglielmi Y, Dubar M, Stéphan J-F (2005) Chronological constraints on processes leading to large active landslides. Earth Planet Sci Lett 235:141–150

    Google Scholar 

  • Boch R, Spötl C, Reitner J, Kramers J (2005) A lateglacial travertine deposit in eastern Tyrol (Austria). Aust J Earth Sci 98:78–92

    Google Scholar 

  • Bovis MJ (1982) Uphill-facing (antislope) scarps in the Coast Mountains, Southwest British Columbia. Geol Soc Am Bull 93:804–812

    Google Scholar 

  • Brückl E (2001) Cause-effect models of large landslides. Nat Hazards 23:291–314

    Google Scholar 

  • Carbonel D, Gutiérrez F, Linares R, Roqué C, Zarroca M, McCalpin J, Guerrero J, Rodriguez V (2013) Differentiating between gravitational and tectonic faults by means of geomorphological mapping, trenching and geophysical surveys. The case of the Zenzano fault (Iberian chain, N Spain). Geomorphology 189:93–108

    Google Scholar 

  • Casagli N, Cigna F, Bianchini S, Hölbing D, Füreder P, Righini G, Del Conte S, Friedl B, Schneiderbauer S, Iasio C, Vlcko J, Greif V, Proske H, Granica K, Falco S, Lozzi S, Mora O, Arnaud A, Novali F, Bianchi M (2016) Landslide mapping and monitoring by using radar and optical remote sensing: examples from the EC-FP7 project SAFER. Remote Sensing Applications: Society and Environment 4:92–108

    Google Scholar 

  • Cheng H, Lawrence R, Edwards, Shen CC, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C, Wang X, Calvin Alexander E Jr (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett 371-372:82–91

    Google Scholar 

  • Cheng H, Edwards RL, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y, Zhang H (2016) The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534:640–646

    Google Scholar 

  • Chigira M (1992) Long-term gravitational deformation of rock by mass rock creep. Eng Geol 32:157–184

    Google Scholar 

  • Cossart E, Braucher R, Fort M, Bourles DL, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (upper durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95:3–26

    Google Scholar 

  • Crosta GB (1996) Landslide, spreading, deep seated gravitational deformation: analysis, examples, problems and proposals. Geogr Fis Din Quat 19:297–313

    Google Scholar 

  • Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40:176–191

    Google Scholar 

  • Crosta GB, Zanchi A (2000) Deep seated slope deformations. Huge, extraordinary, enigmatic phenomena. In: Bromhead E, Dixon N, Ibsen M (eds) Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, Cardiff, Thomas Telford, London, pp. 351–358

  • Crosta GB, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European alps. Tectonophysics 605:13–33

    Google Scholar 

  • Della Chiesa S, Bertoldi G, Niedrist G, Obojes N, Endrizzi S, Albertson JD, Wohlfahrt G, Hörtnagl L, Tappeiner U (2014) Modelling changes in grassland hydrological cycling along an elevational gradient in the alps. Ecohydrology 7:1453–1473

    Google Scholar 

  • Drysdale R, Spötl C, Hellstrom JC, Richards DA (2012) New advances in the dating of speleothems - an introduction. Quat Geochronol 14:1–4

    Google Scholar 

  • Edwards RL, Chen JH, Wasserburg GJ (1987) 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett 81:175–192

    Google Scholar 

  • El Bedoui S, Guglielmi Y, Lebourg T, Pérez JL (2009) Deep-seated failure propagation in a fractured rock slope over 10,000 years: the La Clapière slope, the south-eastern French alps. Geomorphology 105:232–238

    Google Scholar 

  • Evans SG, Couture R (2002) The 1965 Hope Slide, British Columbia; catastrophic failure of a sagging rock slope. Abstract with Programs of the Geological Society of America Annual Meeting 2002, Denver, Colorado

  • Fah D, Giardini D, Bay F, Bernardi F, Wössner J (2003) Earthquake catalog of Switzerland (ECOS) and the related macroseismic database. Eclogae Geol Helv 96:219–236

    Google Scholar 

  • Fairchild IJ, Baker A (2012) Speleothem science: From process to past environment. Blackwell Quaternary Geoscience Series, Wiley-Blackwell, Chichester 432 pp

    Google Scholar 

  • Fliri F (1975) Das Klima der Alpen im Raume von Tirol. Monographien zur Landeskunde Tirols 1, Innsbruck, pp 1–454

  • Froitzheim N, Conti P, Van Daalen M (1997) Late cretaceous, synorogenic, low-angle normal faulting along the Schlinig fault (Switzerland, Italy, Austria) and its significance for the tectonics of the eastern alps. Tectonophysics 280:267–293

    Google Scholar 

  • Gori S, Falcucci E, Dramis F, Galadini F, Galli P, Giaccio B, Messina P, Pizzi A, Sposato A, Cosentino D (2014) Deep-seated gravitational slope deformation, largescale rock failure, and active normal faulting along Mt. Morrone (Sulmona basin, Central Italy): geomorphological and paleoseismological analyses. Geomorphology 208:88–101

    Google Scholar 

  • Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017) Beyond debuttressing: mechanics of paraglacial rock slope damage during repeat glacial cycles. J Geophys Res Earth Surf 122:1004–1036

    Google Scholar 

  • Gutiérrez F, Ortuño M, Lucha P, Guerrero J, Acosta E, Coratza P, Piacentini D, Soldati M, Beguería S (2008) Late quaternary episodic displacement on a sackung scarp in the central Spanish Pyrenees. Secondary paleoseismic evidence? Geodin Acta 21:187–202

    Google Scholar 

  • Gutiérrez F, Carbonel D, Guerrero J, McCalpin JP, Linares R, Roqué C, Zarroca M (2012) Late Holocene episodic displacement on fault scarps related to interstratal dissolution of evaporites (Teruel Neogene graben, NE Spain). J Struct Geol 34:2–19

    Google Scholar 

  • Gutiérrez-Santolalla F, Acosta E, Ríos S, Guerrero J, Luch P (2005) Geomorphology and geochronology of sackung features (uphill-facing scarps) in the central Spanish Pyrenees. Geomorphology 69:298–314

    Google Scholar 

  • Habler G, Thöni M, Grasemann B (2009) Cretaceous metamorphism in the Austroalpine Matsch unit (eastern alps): the interrelation between deformation and chemical equilibration processes. Mineral Petrol 97:149–171

    Google Scholar 

  • Heiss AG, Kofler W, Oeggl K (2005) The Ulten Valley in South Tyrol, Italy: vegetation and settlement history of the area, and macrofossil record from the Iron age cult site of St. Walburg. Palyno-Bulletin 1:63–73

    Google Scholar 

  • Hermanns RL, Oppikofer T, Anda E Blikra LH, Böhme M, Bunkholt H, Crosta GB, Dahle H, Devoli G, Fischer L, Jaboyedoff M, Loew S, Saetre S, Yugsi Molina FX (2013) Hazard and risk classification for large unstable rock slopes in Norway. Ital J Eng Geol Environ - Book Series 6. https://doi.org/10.4408/IJEGE.2013-06.B-22

  • Hippolyte JC, Brocard G, Tardy M, Nicoud G, Bourlès D, Braucher R, Ménard G, Souffaché B (2006) The recent fault scarps of the western alps (France): tectonic surface ruptures or gravitational sackung scarps? A combined mapping, geomorphic, levelling, and 10Be dating approach. Tectonophysics 418:255–276

    Google Scholar 

  • Hippolyte JC, Bourlès D, Braucher R, Carcaillet J, Léanni L, Arnold M, Aumaitre G (2009) Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the alps of savoy (France). Geomorphology 108:312–320

    Google Scholar 

  • Hippolyte JC, Bourlès D, Léanni L, Braucher R, Chauvet F, Lebatard AE (2012) 10Be ages reveal >12 ka of gravitational movement in a major sackung of the western alps (France). Geomorphology 171–172:139–153

    Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436

    Article  Google Scholar 

  • Jarman D, Agliardi F, Crosta GB (2011) Megafans and outsize fans from catastrophic slope failures in alpine glacial troughs: the Malser Haide and the Val Venosta cluster, Italy. In: Jaboyedoff M (ed) Slope Tectonics Geological Society of London Special Publication, 351, pp 253–278

    Google Scholar 

  • Kahle HG, Geiger A, Burki B, Gubler E, Marti U, Wirth B, Rothacher M, Gurtner W, Beutler G, Bauersima I, Pfiffner OA (1997) Recent crustal movements, geoid and density distribution: contribution from integrated satellite and terrestrial measurements. In: Pfiffner O, Lehner P, Heitzmann P, Mueller S, Steck A (eds) Results of the NRP20 deep structures of the Swiss alps. Birkhäuser, Basel, pp 251–259

    Google Scholar 

  • Kellogg KS (2001) Tectonic controls on a large landslide complex: Williams Fork Mountains near Dillon, Colorado. Geomorphology 41:355–368

    Google Scholar 

  • Kolesar PT, Riggs AC (2004) Influence of depositional environment on Devils Hole calcite morphology and petrology. In: Sasowsky ID, Mylroie J (eds) Studies of Cave Sediments. Physical and Chemical Records of Paleoclimate. Kluwer, New York, pp 227–241

    Google Scholar 

  • Koltai G, Spötl C, Luetscher M, Cheng H, Barret SJ, Müller W (2017) The nature of annual lamination in carbonate flowstones from non-karstic fractures, Vinschgau (northern Italy). Chem Geol 457:1–14

    Google Scholar 

  • Koltai G, Cheng H, Spötl C (2018) Palaeoclimate significance of speleothems in crystalline rocks: a test case from the late glacial and early Holocene (Vinschgau, northern Italy). Clim Past 14:369–381

    Google Scholar 

  • Le Roux O, Schwartz S, Gamond JF, Jongmans D, Bourlés D, Braucher R, Mahaney W, Carcaillet J, Leannini L (2009) CRE dating on the head scarp of a major landslide (Séchilienne, French alps), age constraints on Holocene kinematics. Earth Planet Sci Lett 280:239–245

    Google Scholar 

  • Maraio S, Bruno PP, Picotti V (2015) High resolution seismic imaging in alpine environment by common reflection surface method. Conference Paper, Near Surface Geoscience 2015 - 21st European Meeting of Environmental and Engineering Geophysics. https://doi.org/10.3997/2214-4609.201413774

  • Mariotto PF, Tibaldi A (2016) Inversion kinematics at deep-seated gravity slope deformations revealed by trenching techniques. Nat Hazards Earth Syst Sci 16:663–674

    Google Scholar 

  • McCalpin JP, Irvine JR (1995) Sackungen at aspen highlands ski area, Pitkin County, Colorado. Environ Eng Geosci 1:277–290

    Google Scholar 

  • McColl ST (2012) Paraglacial rock-slope stability. Geomorphology 153–154:1–16

    Google Scholar 

  • McColl ST, Davies TRH (2013) Large ice-contact slope movements: glacial buttressing, deformation and erosion. Earth Surf Process Landf 38:1102–1115

    Google Scholar 

  • Moro M, Saroli M, Gori S, Falcucci E, Galadini F, Messina P (2012) The interaction between active normal faulting and large scale gravitational mass movements revealed by paleoseismological techniques: a case study from Central Italy. Geomorphology 151–152:164–174

    Google Scholar 

  • Müller B, Zoback ML, Fuchs K, Mastin L, Gregersen S, Pavoni N, Stephansson O, Ljunggren C (1992) Regional patterns of tectonic stress in Europe. J Geophys Res 97:11783–11804

    Google Scholar 

  • Ostermann M, Sanders D (2017) The Brenner pass rock avalanche cluster suggests a close relation between long-term slope deformation (DSGSDs and translational rock slides) and catastrophic failure. Geomorphology 289:44–59

    Google Scholar 

  • Pánek T (2015) Recent progress in landslide dating: a global overview. Prog Phys Geogr 39:168–198

    Google Scholar 

  • Pánek T, Klimeš J (2016) Temporal behavior of deep-seated gravitational slope deformations: a review. Earth-Sci Rev 156:14–38

    Google Scholar 

  • Pánek T, Hradecký J, Šilhán K, Smolková V, Altová V (2009) Time constraints for the evolution of a large slope collapse in karstified mountainous terrain (case study from the southwestern tip of the Crimean Mountains, Ukraine). Geomorphology 108:171–181

    Google Scholar 

  • Polyak V, Hill C, Asmerom Y (2008) Age and evolution of the grand canyon revealed by U-Pb dating of water table-type speleothems. Science 319:1377–1380

    Google Scholar 

  • Pomella H, Flöss D, Speckbacher R, Tropper P, Fügenschuh B (2016) The western end of the Eoalpine high-pressure belt (Texel unit, South Tyrol/Italy). Terra Nova 28:60–69

    Google Scholar 

  • Radbruch-Hall D (1978) Gravitational creep of rock masses on slopes. In: Voight B (ed) Rockslides and avalanches — natural phenomena. Developments in geotechnical engineering, vol 14. Elsevier, Amsterdam, pp 608–657

    Google Scholar 

  • Ravazzi C, Pini R, Badino F, De Amicis M, Londeix L, Reimer PJ (2014) The latest LGM culmination of the Garda glacier (Italian alps) and the onset of glacial termination. Age of glacial collapse and vegetation chronosequence. Quat Sci Rev 105:26–47

    Google Scholar 

  • Reinecker J, Heidbach O, Tingay M, Sperner B, Müller B (2005) The Release 2005 of the World Stress Map (available at www.world-stress-map.org)

  • Reitner J, Linner M (2009) Formation and preservation of large scale toppling related to alpine tectonic structures - eastern alps. Austrian J Earth Sci 102:69–80

    Google Scholar 

  • Richards D, Dorale JA (2003) Uranium-series chronology and environmental applications of speleothems. Rev Mineral Geochem 52:407–460

    Google Scholar 

  • Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW alps. Geomorphology 117:1–13

    Google Scholar 

  • Schmid SM, Haas R (1989) Transition from near surface thrusting to intrabasement decollement, Schlinig thrust, eastern alps. Tectonics 8:697–718

    Google Scholar 

  • Shen CC, Lin K, Duan W, Jiang X, Partin JW, Edwards LR, Cheng H, Tan M (2013) Testing the annual nature of speleothem banding. Sci Rep 3:2633. https://doi.org/10.1038/srep02633

    Article  Google Scholar 

  • Slejko D, Carulli GB, Nicolich R, Rebez A, Zanferrari A, Cavallin A, Doglioni C, Carraro F, Castaldini D, Iliceto V, Semenza E, Zanolla C (1989) Seismotectonics of the eastern-southern alps: a review. Boll Geofis Teor Appl 31:109–136

    Google Scholar 

  • Spötl C, Unterwurzacher M, Mangini A, Longstaffe FJ (2002) Carbonate speleothems in the dry, inneralpine Vinschgau Valley, northernmost Italy: witnesses of changes in climate and hydrology since the last glacial maximum. J Sediment Res 72:793–808

    Google Scholar 

  • Spötl C, Nicolussi K, Patzelt G, Boch R, Daphne Team (2010) Humid climate during deposition of sapropel 1 in the Mediterranean Sea: assessing the influence on the alps. Glob Planet Chang 71:242–248

    Google Scholar 

  • Strauhal T, Prager C, Millen B, Spötl C, Zangerl C, Brandner R (2016) Aquifer chemistry of crystalline rocks and quaternary deposits in a high altitude alpine environment (Kauner Valley, Austria). Austrian J Earth Sci 109:29–44

    Google Scholar 

  • Strozzi T, Ambrosi C, Raetzo H (2013) Interpretation of aerial photographs and satellite SAR interferometry for the inventory of landslides. Remote Sens 5:2554–2570

    Google Scholar 

  • Stumböck M (1999) Die spät- und postglaziale Vegetationsgeschichte des nordwestlichen Südtirols mit einem Beitrag zur Verknüpfung natürlicher Archive mit historischen Quellen. Diss Botanicae 299:1–127

    Google Scholar 

  • Tibaldi A, Rovida A, Corazzato C (2004) A giant deep-seated slope deformation in the Italian alps studied by paleoseismological and morphometric techniques. Geomorphology 58:27–47

    Google Scholar 

  • Urban J, Margielewski W, Hercman H, Žak K, Zernitska V, Pawlak J (2013) Dating speleothems in sandstone, non-karst caves—methodological aspects and practical application, polish outer Carpathians case study. In: Migoń P, Kasprzak M (eds) Sandstone landscapes, diversity, ecology and conservation. Proceedings of the 3rd international conference on Sandsone landscapes, Kudowa-Zdrój, pp 192–201

  • van Husen D (1987) Die Ostalpen in den Eiszeiten - Map 1:500 000. Geological Survey of Austria, Vienna

    Google Scholar 

  • van Husen D (2004) Quaternary glaciations in Austria. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations - extent and chronology, part I: Europe. Developments in quaternary science, vol 2. Elsevier, Amsterdam, pp 1–13

    Google Scholar 

  • Varnes DJ, Radbruch-Hall D, Savage WZ (1989) Topographic and structural conditions in areas of gravitational spreading of ridges in the western United States. US Geol Surv Prof Pap 1496:1–28

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239

    Google Scholar 

  • ZAMG (2015) Das Klima von Tirol – Südtirol – Belluno. 55 pp

  • Zangerl C, Eberhardt E, Perzlmaier S (2010) Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Eng Geol 112:53–67

    Google Scholar 

  • Zerathe S, Lebourg T (2012) Evolution stages of large deep-seated landslides at the front of a subalpine meridional chain (maritime-alps, France). Geomorphology 138:390–403

    Google Scholar 

  • Zerathe S, Braucher R, Lebourg T, Bourles D, Manetti M, Laetitia L (2013) Dating chert (diagenetic silica) using in-situ produced 10Be: possible complications revealed through the comparison with 36Cl applied on coexisting limestone. Quat Geochronol 17:81–93

    Google Scholar 

  • Zerathe S, Lebourg T, Braucher R, Bourlès D (2014) Mid-Holocene cluster of large-scale landslides revealed in the southwestern alps by 36Cl dating. Insight on an Alpinescale landslide activity. Quat Sci Rev 90:106–127

    Google Scholar 

Download references

Acknowledgments

We acknowledge the careful reviews by the journal referees.

Funding

The research was funded by grants (17/40.3 and 16/40.3) from the Autonome Provinz Bozen-Südtirol to MO and CS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ostermann.

Electronic supplementary material

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltai, G., Ostermann, M., Cheng, H. et al. Can vein-filling speleothems constrain the timing of deep-seated gravitational slope deformation? A case study from the Vinschgau (Italian Alps). Landslides 15, 2243–2254 (2018). https://doi.org/10.1007/s10346-018-1032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-1032-y

Keywords

Navigation