Skip to main content

Advertisement

Log in

Long-term evolution and early warning strategies for complex rockslides by real-time monitoring

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The potential of long-term, real-time surface displacement monitoring by ground-based radar interferometry (GB-InSAR) to improve the understanding of mechanisms and set up objective early warning criteria for complex rockslides is explored. Monitoring data for a rockslide in the Central Italian Alps, collected since 1997 by ground-based and remote-sensing techniques, are examined. A unique 9-year continuous GB-InSAR monitoring activity supported an objective subdivision of the rockslide into “early warning domains” with homogeneous involved material, mechanisms and sensitivity to rainfall inputs. Distributed GB-InSAR data allowed setting up a “virtual monitoring network” by a posteriori selection of critical locations representative of early warning domains, for which we analysed relationships among rainfall descriptors and displacement rates. The potential of different early warning criteria, depending on the instability mechanisms dominating different domains, is tested. Results show that (a) rainfall intensity-duration-displacement rate relationships can be useful tools to predict displacements of “rainfall-sensitive” rockslide sectors, where clear trigger-response signals occur, but are unsuitable in rockslide domains affected by the long-term progressive failure of the rock slope and (b) effective early warning strategies for collapse scenarios (entire rockslide, specific domains) can be enforced by modelling real-time, high-frequency GB-InSAR data according to the accelerated creep theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1–2):83–102. doi:10.1016/S0013-7952(00)00066-1

    Article  Google Scholar 

  • Amitrano D, Helmstetter A (2006) Brittle creep, damage, and time to failure in rocks. J Geophys Res 111:B11201

    Article  Google Scholar 

  • Angeli MG, Gasparetto P, Menotti RM, Pasuto A, Silvano S (1996) A visco-plastic model for slope analysis applied to a mudslide in Cortina d’Ampezzo, Italy. Q J Eng Geol Hydrogeol 29(3):233–240

    Article  Google Scholar 

  • Antonello G, Casagli N, Farina P, Leva D, Nico G, Sieber AJ, Tarchi D (2004) Ground-based SAR interferometry for monitoring mass movements. Landslides 1(1):21–28

    Article  Google Scholar 

  • Bazin, S., Malet, J-P., Damiano, E., Picarelli, L., Cardellini, S., Garbarino, E., Gozzi, A., Lovisolo, M., Baron, I., Jochum, B., Ottiwitz, D., Supper, R., Kumelj, S., Bye, L.M., Eidsvig, U., Kalsnes, B., Lam, A., Lacasse, S., Nadim, F., Sparrevik, M., Vangelsten, B.V., Stumpf, A., Van Den Eeckhaut, M., Hervàs, J., Leroi, E., Intrieri, E., Tofani, V., Agliardi, F., Gili, J., Moya, J., Michoud, C., Derron, M-H., Jaboyedoff, M., Blikra, L-H. (2012) Guidelines for landslide monitoring and early warning systems in Europe—design and required technology. Deliverable D4.8, EU project SAFELAND, 153 pp. (available at www.Safeland-fp7.eu)

  • Bernardie S, Desramaut N, Malet J-P, Gourlay M, Grandjean G (2015) Prediction of changes in landslide rates induced by rainfall. Landslides (2015) 12:481–494

    Article  Google Scholar 

  • Bhandari RK (1988) Special lecture: some practical lessons in the investigation and field monitoring of landslides. In: Ch. Bonnard. A.A. Balkema (eds.) Proceedings of the 5th International Symposium on Landslides, Vol. 2. Lausanne, Rotterdam, pp. 1435–1457

  • Blikra LH, Christiansen HH, Kristensen L, Lovisolo M (2015) Characterization, geometry, temporal evolution and controlling mechanisms of the Jettan rock-slide, Northern Norway. In: Engineering Geology for Society and Territory, 2, 273–278. Springer International Publishing

  • Broadbent CD, Zavodni ZM (1982) Influence of rock structure on stability. Stability in Surface Mining, 3, Soc. of Mining Engineers

  • Broccolato M, Cancelli P, Crosta GB, Tamburini A, Alberto W (2011) Tecniche di rilievo e monitoraggio della frana di Mont de la Saxe (Courmayeur—AO). XXIV Convegno Nazionale di Geotecnica, “Innovazione Tecnologica nell’ingegneria Geotecnica”, Napoli 22–24 june 2011 (in Italian)

  • Cappa F, Guglielmi Y, Soukatchoff VM, Mudry J, Bertrand C, Charmoille A (2004) Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring: example of the la Clapiere landslide (southern Alps, France). J Hydrol 291(1):67–90

    Article  Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7:291–301

    Article  Google Scholar 

  • Crosta GB (2013) Revisione dei valori Soglia da dati GB_InSAR a seguito dell’evento novembre 2012. Research Report, Università degli Studi di Milano Bicocca, ARPA-CMG Lombardia, 21 pp (in Italian)

  • Crosta GB, Agliardi F (2002) How to obtain alert velocity thresholds for large rockslides. Phys Chem Earth, Parts A/B/C 27(36):1557–1565

  • Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40(1):176–191

    Article  Google Scholar 

  • Crosta G, Zanchi A (2000) Deep seated slope deformations: huge, extraordinary, enigmatic phenomena. Proceed VIII Int Symp on Landslides, ISL, Cardiff 2000 1:351–358

    Google Scholar 

  • Crosta G, Agliardi F, Frattini P (1999) Convenzione di studio sulla Frana del Ruinon (Valfurva, Sondrio). Technical report, Regione Lombardia–Dipartimento di Scienze Geologiche e Geotecnologie, Università di Milano-Bicocca, 197 pp (in Italian)

  • Crosta GB, Frattini P, Agliardi F, Sosio E, Rocchi G, Vaciago G, Callerio A, Fontana M, Previtali F, Spickermann A, Malet JP, Picarelli L, Santo A, Di Crescenzo G, Springman S, Alonso E, Pineda J, Pinyol NM, Romero E, Pitilakis K, Fotopoulou S, Kakderi K, Riga E, Ktenidou O (2010) Landslide triggering mechanisms in Europe—overview and State of the Art, Deliverable D1.1, EU project SAFELAND, 373 pp. (available at www.Safeland-fp7.eu)

  • Crosta, G.B., Castellanza R., Frattini, P., Broccolato M., Bertolo, D., Cancelli P., Tamburini A, (2012) Comprehensive understanding of a rapid moving rockslide: the Mt de la Saxe landslide. MIR 2012 XIV Ciclo di Conferenze di Meccanica e Ingegneria delle Rocce - Nuovi metodi di indagine, monitoraggio e modellazione degli ammassi rocciosi, 231–250 (in Italian)

  • Crosta GB, di Prisco C, Frattini P, Frigerio G, Castellanza R, Agliardi F (2014) Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide. Landslides 11(5):747–764. doi:10.1007/s10346-013-0433-1

    Article  Google Scholar 

  • Del Ventisette C, Casagli N, Fortuny-Guasch J, Tarchi D (2012) Ruinon landslide (Valfurva, Italy) activity in relation to rainfall by means of GBInSAR monitoring. Landslides 9:497–509. doi:10.1007/s10346-011-0307-3

    Article  Google Scholar 

  • Faillettaz J, Sornette D, Funk M (2009) Gravity driven instabilities: Interplay between state and velocity dependent frictional sliding and stress corrosion damage cracking. J Geophys Res Solid Earth 115(B3). doi:10.1029/2009JB006512

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. Geoscience and Remote Sensing, IEEE Transactions on 39(1):8–20

    Article  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR™. IEEE Trans Geosci Remote Sens 49(9):3460–3470

    Article  Google Scholar 

  • Fukuzono T (1985) A new method for predicting the failure time of a slope. In: Proc. 4th Inter. Conference and Field Workshop on Landslides. Tokyo University Press, Tokyo, 145–150

  • Geertsema M, Clague JJ, Schwab JW, Evans SG (2006) An overview of recent large catastrophic landslides in northern British Columbia, Canada. Eng Geol 83(1):120–143

  • Gottardi G, Butterfield R (2001) Modelling ten years of downhill creep data. In proceedings of the international conference on soil mechanics and geotechnical engineering, Vol 1. AA Balkema Publishers, pp. 99–104

  • Guglielmi Y, Cappa F, Binet S (2005) Coupling be-tween hydrogeology and deformation of mountainous rock slopes: insights from La Clapière area (southern Alps, France). Compt Rendus Geosci 337(13):1154–1163

    Article  Google Scholar 

  • Helmstetter A, Sornette D, Grasso JR, Andersen JV, Gluzman S, Pisarenko V (2004) Slider block friction model for landslides: Application to Vaiont and La Clapiere landslides. J Geophys Res Solid Earth 109(B2). doi:10.1029/2002JB002160

  • Herrera G, Fernández-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2009) A landslide forecasting model using ground based SAR data: the Portalet case study. Eng Geol 105(3):220–230

    Article  Google Scholar 

  • Intrieri E, Gigli G, Mugnai F, Fanti R, Casagli N (2012) Design and implementation of a landslide early warning system. Eng Geol 147:124–136

    Article  Google Scholar 

  • Michoud C, Bazin S, Blikra LH, Derron MH, Jaboyedoff M (2013) Experiences from site-specific landslide early warning systems. Natural Hazards and Earth System Science 13(10):2659–2673

    Article  Google Scholar 

  • Mufundirwa A, Fujii Y, Kodama J (2010) A new practical method for prediction of geomechanical failure-time. Int J Rock Mech Min Sci 47:1079–1090

    Article  Google Scholar 

  • Nishii R, Matsuoka N (2010) Monitoring rapid head scarp movement in an alpine rockslide. Eng Geol 115(1):49–57

  • Puzrin AM, Schmid A (2012) Evolution of stabilized creeping landslides. Geotechnique 62(6):491–501

  • Ranalli M, Gottardi G, Medina-Cetina Z, Nadim F (2010) Uncertainty quantification in the calibration of a dynamic viscoplastic model of slow slope movements. Landslides 7:31–41

  • Rose ND, Hungr O (2007) Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. Int J Rock Mech Min Sci 44(2):308–320

    Article  Google Scholar 

  • Saito M, Uezawa H (1961) Failure of soil due to creep. In: Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering. 1: 315–318

  • Secondi M, Crosta GB, di Prisco C, Frigerio G, Frattini P, Agliardi F (2013) Landslide motion forecasting by a dynamic visco-plastic model. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 3: Spatial analysis and modelling Springer, 151–159. doi:10.1007/978-3-642-31310-3_21

  • Sornette D, Helmstetter A, Andersen JV, Gluzman S, Grasso JR, Pisarenko V (2004) Towards landslide prediction: two case studies. Physica A 338:605–632

    Article  Google Scholar 

  • Strozzi T, Delaloye R, Kääb A, Ambrosi C, Perruchoud E, Wegmüller U (2010) Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J Geophys Res 115:F01014. doi:10.1029/2009JF001311

    Article  Google Scholar 

  • Tarchi D, Casagli N, Moretti S, Leva D, Sieber AJ (2003) Monitoring landslide displacements by using ground-based synthetic aperture radar interferometry: application to the Ruinon landslide in the Italian Alps. J Geophys Res 108:2387. doi:10.1029/2002JB002204 B8

    Article  Google Scholar 

  • Vallet A, Charlier JB, Fabbri O, Bertrand C, Carry N, Mudry J (2015) Functioning and precipitation-displacement modelling of rainfall-induced deep-seated landslides subject to creep deformation. Landslides 1–18

  • Voight B (1988) A method for prediction of volcanic eruption. Nature 332:125–130

    Article  Google Scholar 

  • Zangerl C, Eberhardt E, Perzlmaier S (2010) Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its inter-action with a dam reservoir. Eng Geol 112(1):53–67

    Article  Google Scholar 

Download references

Acknowledgements

We thank ARPA Lombardia for the collaboration and Davide Leva (Ellegi s.r.l.) for the continuous development of the LisaLab GBInSAR software and equipment and the help in data analysis. We are grateful to Regione Lombardia for providing the satellite-based radar interferometry data (TRE—Telerilevamento Europa srl). The research was partly supported by the EU FP7 project SAFELAND (GA 226479) and partly by the Italian Ministry of Research—PRIN 2010-11 program prot. 2010E89BPY_007 project. The data presented and discussed in this paper can be requested directly to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Crosta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crosta, G.B., Agliardi, F., Rivolta, C. et al. Long-term evolution and early warning strategies for complex rockslides by real-time monitoring. Landslides 14, 1615–1632 (2017). https://doi.org/10.1007/s10346-017-0817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0817-8

Keywords

Navigation