, Volume 14, Issue 5, pp 1555–1563 | Cite as

Process dependence of grain size distributions in rock avalanche deposits

Original Paper


Rock avalanches are a form of hazardous long-runout landslide and leave fragmented deposits of complex sedimentology that, if studied in detail, can provide insight into their emplacement processes. Complexity arises due to the myriad overlapping factors known to contribute to the final deposit fabric, such as source structures, lithology (i.e. material properties), topographic feedback, substrate interaction and emplacement processes (i.e. internal factors), as well as our reliance on (un)suitable exposures. Herein, we present sedimentological data from two carbonate rock avalanche deposits (Tschirgant in Austria and Flims in Switzerland), where changes in lithology can be eliminated from the causal equation due to their largely mono-mineralic composition. We further eliminated the effects of external influences such as topography or substrate interactions by detailed facies mapping of the deposit interior. Since sedimentary properties locally vary within less than 1-m2 outcrop area, emplacement processes are the only causes that remain to explain the different fabrics. Characteristic (fractal) grain size distributions of three distinctive sub-facies in the interior of these, and other, rock avalanche deposits—jigsaw-fractured, fragmented, and shear zone facies—can be linked to specific processes acting during emplacement. We suggest that a heterogeneously distributed and progressively increasing particle breakage in the moving granular mass best explains the ranges of fractal dimensions and associated features for the respective sub-facies, from simple breakage along pre-existing planes, through dynamic fragmentation which locally minimises coordination number, to zones of shear concentration. No exotic emplacement mechanisms (such as air-layer lubrication or fluidised substrates) are required to produce these features; continued, heterogeneous degrees of fragmentation of an initially intact source rock best explains the sedimentary record of rock avalanches.


Rock avalanche Facies Fragmentation Emplacement processes 



This research was partially funded by the German Research Foundation grant DU1294/2-1 to AD. We gratefully acknowledge thorough review by the editor Mauri McSaveney and by two anonymous reviewers. AD is indebted to Christoph Prager for abseiling during sample collection at Tschirgant.


  1. Abele G (1974) Bergstürze in den Alpen, ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpensvereinshefte 25:230Google Scholar
  2. Anders MH, Aharonov E, Walsh JJ (2000) Stratified granular media beneath large slide blocks: implications for mode of emplacement. Geology 28(11):971–974CrossRefGoogle Scholar
  3. Beuselinck L, Govers G, Poesen J, Degraer G, Froyen L (1998) Grain-size distribution by laser diffractometry: comparison with the sieve-pipette method. Catena 32:193–208CrossRefGoogle Scholar
  4. Brideau M-A, Procter JN (2015) Discontinuity orientation in jigsaw clasts from volcanic debris avalanche deposits and implications for emplacement mechanism. GeoQuébec 2015:20–23 Abstract 614Google Scholar
  5. Caballero L, Sarocchi D, Soto E, Borselli L (2014) Rheological changes induced by clast fragmentation in debris flows. J Geophys Res: Earth Surf 119(9):1800–1817CrossRefGoogle Scholar
  6. Campbell CS (1989) Self-lubrication for long runout landslides. J Geol 97(6):653–665CrossRefGoogle Scholar
  7. Cintala MJ, Hörz F (1992) An experimental evaluation of mineral-specific comminution. Meteoritics 27:395–403CrossRefGoogle Scholar
  8. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703CrossRefGoogle Scholar
  9. Crosta GB, Frattini P, Fuis N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res 112:23CrossRefGoogle Scholar
  10. Davies TR (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 15(1):9–24Google Scholar
  11. Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109:67–79CrossRefGoogle Scholar
  12. Davies TR, McSaveney MJ, Hodgson KA (1999) A fragmentation-spreading model for long-runout rock avalanches. Can Geotech J 36:1096–1110CrossRefGoogle Scholar
  13. Dufresne A, Prager C, Bösmeier AS (2016a) Insights into rock avalanche emplacement processes by detailed morpho-lithological studies of the Tschirgant deposit (Tyrol Autria). Earth Surf Process Landf 41(5):587–602CrossRefGoogle Scholar
  14. Dufresne A, Bösmeier AS, Prager C (2016b) Rock avalanche sedimentology – case study and review. Earth-Sci Rev 163:234–259CrossRefGoogle Scholar
  15. Dunning S (2004) Rock avalanches in high mountains [PhD thesis]. University of Luton, UK:309Google Scholar
  16. Dunning SA, Armitage PJ (2011) The grain-size distribution of rock-avalanche deposits: implications for natural dam stability. In: Evans SG, Hermanns RL, Strom A, Scarascia-Mugnozza G (eds), Natural and Artifical Rockslide Dams, Lecture Notes in Earth Sciences 133:479–498Google Scholar
  17. Einav I (2007) Breakage mechanics – part II: modelling granular materials. J Mech Phys Solids 55:1298–1320CrossRefGoogle Scholar
  18. Erismann TH (1979) Mechanisms of large landslides. Rock Mech 12(1):15–46CrossRefGoogle Scholar
  19. Evans DJA, Benn DI (2004) Facies description and the logging of sedimentary exposures. In: Evans DJA, Benn DI (eds) A practical guide to the study of glacial sediments. Routledge, Taylor & Francis Group, New York, pp 11–51Google Scholar
  20. Friedmann SJ (1997) Rock-avalanche elements of the Shadow Valley basin, eastern Mojave Desert, California: processes and problems. J Sediment Res 67(5):792–804Google Scholar
  21. Gillespie CS (2015) Fitting heavy tailed distributions: the poweRlaw package. J Stat Softw 64(2). doi: 10.18637/jss.v064.i02
  22. Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens, Washington. USGS Open-file Report 96–677:90 ppGoogle Scholar
  23. Heim A (1932) Bergsturz und Menschenleben (Landslides and human lives). Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 77. Beer & Co, Zürich 218 ppGoogle Scholar
  24. Hewitt K (2001) Catastrophic rockslides and the geomorphology of the Hunza and Gilgit river valleys, Karakoram Himalaya. Erdkunde 55:72–93CrossRefGoogle Scholar
  25. Hewitt K (2002) Styles of rock avalanche depositional complexes conditioned by very rugged terrain, Karakoram Himalaya, Pakistan. Rev Eng Geol 15:345–377CrossRefGoogle Scholar
  26. Hooke RLEB, Iverson NR (1995) Grain-size distribution in deforming subglacial tills: role of grain fracture. Geology 23(1):57–60CrossRefGoogle Scholar
  27. Huang R, Pei X, Fan X, Zhang W, Li S, Li B (2012) The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, may 12, 2008, China. Landslides 9:131–142CrossRefGoogle Scholar
  28. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long runout-out mechanism. Geol Soc Am Bull 116(9–10):1240–1252CrossRefGoogle Scholar
  29. Hutchinson JN (2006) Massive rocks slope failure: perspectives and retrospectives on state-of-the-art. IN: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from Massive Rock Slope Failure. Nato Science Series IV, Earth and Environmental Sciences 49:619–662Google Scholar
  30. Hutchinson JN, Bhandari RK (1971) Undrained loading, a fundamental mechanism of mudflows and other mass movements. Géotechnique 21:353–358CrossRefGoogle Scholar
  31. Iverson NR, Hoover TS, Hooke RL (1996) A laboratory study of sediment deformation: stress heterogeneity and grain-size evolution. Ann Glaciol 22:167–175CrossRefGoogle Scholar
  32. Johnson BC, Campbell CS, Melosh HJ (2016) The reduction of friction in long runout landslides as an emergent phenomenon. J Geophys Res, Earth Surf. doi: 10.1002/2015JF003751 Google Scholar
  33. Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res B: Solid Earth 110(12):1–13Google Scholar
  34. Lade PV, Yamamuro JA, Bopp PA (1996) Significance of particle crushing in granular materials. J Geotech Eng 122(4):309–316CrossRefGoogle Scholar
  35. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:310–331CrossRefGoogle Scholar
  36. McSaveney MJ, Davies TR (2007) Rockslides and their motion. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in landslide science. Springer-Verlag, Berlin, pp 113–134CrossRefGoogle Scholar
  37. Melosh HJ (1979) Acoustic fluidization – a new geologic process. J Geophys Res 84(B13):7513–7520CrossRefGoogle Scholar
  38. Nakata Y, Hyodo M, Hyde AFL, Kato Y, Murata H (2001) Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found 41(1):69–82CrossRefGoogle Scholar
  39. Ostermann M, Ivy-Ochs S, Sanders D, Prager C (2016) Multi-method (14C, 36Cl, 234U/230Th) age bracketing of the Tschirgant rock avalanche (eastern alps): implications for absolute dating of catastrophic mass-wasting. Earth Surf Process Landf. doi: 10.1002/esp.4077 Google Scholar
  40. Pagliarini L (2008) Strukturelle Neubearbeitung des Tschirgant und Analyse der lithologisch-strukturell induzierten Massenbewegung (Tschirgant Bergsturz, Nördliche Kalkalpen, Tirol). Diplom thesis. Leopold-Franzens-Universität Innsbruck, Austria:95 ppGoogle Scholar
  41. Patzelt G (2012) The rock avalanches of Tschirgant and Haiming (upper Inn Valley, Tyrol, Austria), comment on the map supply. Jahrb Geol Bundesanst 152(1–4):13–24Google Scholar
  42. Perinotto H, Schneider J-L, Bachèlery P, Le Bourdonnec F-X, Famin V, Michon L (2015) The extreme mobility of debris avalanches: a new model of transport mechanism. J Geophys Res: Solid Earth. doi: 10.1002/2015JBO11994 Google Scholar
  43. Pollet N, Schneider J-LM (2004) Dynamic disintegration processes accompanying transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth Planet Sci Lett 221:433–448CrossRefGoogle Scholar
  44. Prager C (2010) Geologie, Alter und Struktur des Fernpass Bergsturzes und tiefgründiger Massenbewegungen in seiner Umgebung. PhD thesis, Universität Innsbruck, Tirol, Österreich, p 307Google Scholar
  45. Reading HG (ed) (2009) Sedimentary environments: processes, facies, and stratigraphy. Oxford, Blackwell, 689 ppGoogle Scholar
  46. Roverato M, Cronin S, Procter J, Capra L (2015) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. GSA Bull 127(1–2):3–18CrossRefGoogle Scholar
  47. Sammis C, King G (2007) Mechanical origin of power law scaling in fault zone rock. Geophys Res Lett 34:L04312. doi: 10.1029/2006GL028548 CrossRefGoogle Scholar
  48. Sammis CG, King G, Biegel RL (1987) The kinematics of gouge deformation. Pure Appl Geophys 125:777–812CrossRefGoogle Scholar
  49. Storti F, Balsamo F, Salvini F (2007) Particle shape evolution in natural carbonate granular wear material. Terra Nov. 19:344–352Google Scholar
  50. Tsoungui O, Vallet D, Charmet J-C (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105:190–198CrossRefGoogle Scholar
  51. van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247CrossRefGoogle Scholar
  52. Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-debris avalanche of 18 may 1980. Géotechnique 33(3):243–273CrossRefGoogle Scholar
  53. von Poschinger A, Wassmer P, Maisch M (2006) The Flims rockslides: history of interpretation and new insights. In: Evans SG, Scarascia MG, Strom A, Hermanns RL (eds), Landslides from massive rock slope failure, NATO Science Series, IV, Earth and Environmental Sciences 49:329–256Google Scholar
  54. Walker RG (1992) Facies, facies models and modern stratigraphic concepts. In: Walker RG, James NP (eds) Facies models: response to sea-level change. Geological Association of Canada, Toronto, pp 1–14Google Scholar
  55. Wassmer P, Schneider JL, Pollet N, Schmitter-Voirin C (2004) Effects of the internal structure of a rock-avalanche dam on the drainage mechanism of its impoundment, Flims Sturzstrom and Ilanz paleo-lake, Swiss Alps. Geomorphology 61:3–17CrossRefGoogle Scholar
  56. Weidinger JT, Korup O, Munack H, Altenberger U, Dunning S, Tipelt G, Lottermoser W (2014) Giant rockslides from the inside. Earth Planet Sci Lett 389:62–73CrossRefGoogle Scholar
  57. Yarnold JC, Lombard JP (1989) A facies model for large rock avalanche deposits formed in dry climates. In: Colburn IP, Abbott PL, Minch J (eds) Field Trip Guidebook - Pacific Section, Society of Economic Paleontologists and Mineralogists 62:9–31Google Scholar
  58. Zhang M, Yin Y, McSaveney M (2016) Dynamics of the 2008 earthquake-triggered Wenjiagou Creek rock avalanche, Qingping, Sichuan, China. Eng Geol 200:75–87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Engineering Geology and HydrogeologyRWTH Aachen UniversityAachenGermany
  2. 2.School of Geography, Politics and SociologyNewcastle UniversityNewcastleUK

Personalised recommendations