Skip to main content
Log in

Linking rainfall-induced landslides with predictions of debris flow runout distances

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Rapid debris flows are among the most destructive natural hazards in steep mountainous terrains. Prediction of their path and impact hinges on knowledge of initiation location and the size and constitution of the released mass. To better link mass release initiation with debris flow paths and runout lengths, we propose to capitalize on a newly developed model for rainfall-induced landslide initiation (“Catchment-scale Hydro-mechanical Landslide Triggering” CHLT model, von Ruette et al. 2013) and couple it with simple estimates of debris flow runout distances and pathways. Landslide locations and volumes provided by the CHLT model are used as inputs to simulate debris flow runout distances with two empirical- and two physically-based models. The debris flow runout models were calibrated using two landslide inventories in the Swiss Alps obtained following a large rainfall event in 2005. We first fitted and tested the models for the “Prättigau” inventory, where detailed information on runout path was available, and then applied the models to landslides inventoried from a different catchment (“Napf”). The predicted debris flow runout distances (emanating from CHLT simulated landslide positions) were well in the range of observed values for the physically-based approaches. The empirical approaches tend to overestimate runout distances relative to observations. These preliminary results demonstrate the added value of linking shallow landslide triggering models with predictions of debris flow runout pathways for a range of soil states and triggering events, thus providing a more complete hazard assessment picture for debris flow exposure at the catchment scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bakkehøi S, Cheng T, Domaas U, Lied K, Perla R, Schieldrop B (1981) On the computation of parameters that model snow avalanche motion. Can Geotech J 18(1):121–130

    Article  Google Scholar 

  • Bartelt P, Salm L, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmyfluid model with active/passive longitudinal straining. J Glaciol 45(150):242–254

    Article  Google Scholar 

  • Benda LE, Cundy TW (1990) Predicting deposition of debris flow in mountain channels. Can Geotech J 27(4):409–417

    Article  Google Scholar 

  • Bonadies F, Nordal S, Gylland AS, Grimstad G, Jostad HP, Cuomo S and Cascini L (2014) Numerical methods for simulation of downward progressive landslides. In: Numerical Methods in Geotechnical Engineering – Hicks, Brinkgreve and Rohe (Eds), Taylor & Francis Group, London, 978-1-138-00146-6

  • Cannon S (1993) An empirical model for the volume-change behavior of debris flows. In: Hydraulic Engineering, Conference Proceeding paper, pp. 1768–1773, ASCE

  • Cascini L, Cuomo S, Pastor M, Sorbino G (2010) Modeling of rainfall-induced shallow landslides of the flow-type. J Geotech Geoenviron Eng 136:85–98

    Article  Google Scholar 

  • Cascini L, Cuomo S, Pastor M, Sorbino G, Piciullo L (2014a) SPH run-out modelling of channelised landslides of the flow type. Geomorphology 214:502–513

    Article  Google Scholar 

  • Cascini L, Sorbino G, Cuomo S, Ferlisi S (2014b) Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). Landslides 11:779–792

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63(1):1–14

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271

    Article  Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3(1/2):81–93. doi:10.5194/nhess-3-81-2003

    Article  Google Scholar 

  • Cuomo S, Pastor M, Cascini L, Castorino GC (2013) Interplay of rheology and entrainment in debris avalanches: a numerical study. Can Geotech J 51:1318–1330

    Article  Google Scholar 

  • D’Ambrosio D, Di Gregorio S, Iovine G, Lupiano V, Rongo R, Spataro W (2003) First simulations of the Sarno debris flow through Cellular Automata modelling. Geomorphology 54(1–2):91–117. doi:10.1016/S0169-555X(03)00058-8

    Article  Google Scholar 

  • Eichenberger J, Nuth M, Laloui L (2010), Modelling landslides in partially saturated slopes subjected to rainfall infiltration. In: Laloui L, editor. Mechanics of unsaturated geomaterials. John Wiley & Sons; 2010. p. 235–49

  • Fannin R, Wise M (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38(5):982–994

    Article  Google Scholar 

  • Gamma P (2000) dfwalk – Ein Murgang – Simulationsprogramm zur Gefahrenzonierung. Dissertation, University of Bern

  • Graf C, McArdell BW (2009) Debris-flow monitoring and debris-flow runout modelling before and after construction of mitigation measures: an example from an instable zone in the Southern Swiss Alps. In: La géomorphologie alpine: entre patrimoine et contrainte. Actes du colloque de la Société Suisse de Géomorphologie, edited by: Lambiel C, Reynard E, Scapozza C pp. 3–5

  • Guthrie R, Hockin A, Colquhoun L, Nagy T, Evans S, Ayles C (2010) An examination of controls on debris flow mobility: Evidence from coastal British Columbia. Geomorphology 114(4):601–613

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Fretz & Wasmuth

  • Heinrich F, Boudon G, Komorowski J, Sparks R, Herd R, Voight B (2001) Numerical simulation of the December 1997 Debris Avalanche in Montserrat, Lesser Antilles. Geophys Res Lett 28(13):2529

    Article  Google Scholar 

  • Hungr O, McDougall S, Bovis M (2005) Entrainment of material by debris flow. In: Debris flow, hazards and related phenomena. Springer Praxis Books 135-158

  • Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102:152–163. doi:10.1016/j.enggeo.2008.03.012

    Article  Google Scholar 

  • Hürlimann M, McArdell B, Rickli C (2015) Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology 232:20–32

    Article  Google Scholar 

  • Iverson RM (2003) The debris-flow rheology myth. In: Debris flow Mechanics and Mitigation Conference, Mills Press, Davos, pp. 303–314

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110(8):972–984

    Article  Google Scholar 

  • Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience 4, doi: 10.1038/NGEO1040

  • Körner HJ (1976) Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen. Rock Mech Rock Eng 8(4):225–256

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63(3):301–331

    Article  Google Scholar 

  • Lu N, Godt JW, Wu DT (2010) A closed form equation for effective stress in unsaturated soil. Water Resour Res 46(5), W05515. doi:10.1029/2009WR008646

    Article  Google Scholar 

  • Manville V, Major JJ, Fagents SA (2013) Modeling lahar behavior and hazards. In: Fagents SA, Gregg TKP, Lopes MC (editors): Modeling volcanic processes: The physics and mathematics of volcanism. Cambridge University Press 300-330

  • Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flow in the northeastern part of the Iberian Peninsula. Landslides 5(1):127–142

    Article  Google Scholar 

  • Mergili M, Fellin W, Moreiras SM, Stötter J (2012) Simulation of debris flow in the Central Andes based on Open Source GIS: possibilities, limitations, and parameter sensitivity. Nat Hazards 61(3):1051–1081

    Article  Google Scholar 

  • Mullins CE, Panayiotopoulos KP (1984) The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress. J Soil Sci 35(3):459–468

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33(2):143–172

    Article  Google Scholar 

  • Perla R, Cheng T, McClung D (1980) A two-parameter model of snow-avalanche motion. J Glaciol 26:197–207

    Google Scholar 

  • Petley DN, Higuchi T, Petley DJ, Bulmer MH, Carey J (2005) Development of progressive landslide failure in cohesive materials. Geology 33(3):201–204

    Article  Google Scholar 

  • Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11:542

    Article  Google Scholar 

  • Raetzo H, Rickli C (2007) Rutschungen. In: Ereignisanalyse Hochwasser 2005: Teil 1– Prozesse, Schäden und erste Einordnung, edited by Bezzola G, Hegg C, pp. 195–209, Bundesamt für Umwelt BAFU, Birmensdorf, Eidgenössische Forschungsanstalt WSL, Bern

  • Rickenmann D (1990) Debris flow 1987 in Switzerland: modelling and fluvial sediment transport, Hydrology in Mountainous Regions. Proceedings of two Lausanne Symposia. IAHS Publ 194:371–378

    Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19(1):47–77

    Article  Google Scholar 

  • Rickenmann D (2005) Runout prediction methods. In: Debris-flow hazards and related phenomena. Springer Praxis Books, pp. 305–324, Springer Berlin & Heidelberg, 10.1007/3-540-27129-513

  • Rickli C, Graf F (2009) Effects of forests on shallow landslides—case studies in Switzerland. For Snow Landsc Res 82(1):33–34

    Google Scholar 

  • Rickli C, Kamm S, Bucher H (2008), Ereignisanalyse Hochwasser 2005, Teilprojekt flachgründige Rutschungen. Projektbericht zuhanden des Bundesamtes für Umwelt, BAFU

  • Rotach M, Appenzeller C, Bader S, Frei C, Germann U, Liniger M, Zbinden P (2007) Meteorologie. In Ereignisanalyse Hochwasser 2005, Teil 1 – Prozesse, Schäden und erste Einordnung, edited by Bezzola G, Hegg C, Bundesamt für Umwelt, BAFU

  • Savage S, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199(1):177–215

    Article  Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech Rock Eng 5(4):231–236

    Article  Google Scholar 

  • Stothoff S (2008) Infiltration tabulator for Yucca mountain: Bases and confirmation. Prepared for U.S. N.R.C. http://pbadupws.nrc.gov/docs/ML0823/ML082350701.html

  • Voellmy A (1955) Über die Zerstörungskraft von Lawinen: L’Espacement des râteliers de retenue de la neige. Schweizerische Bauzeitung, 73, doi:10.5169/seals-6187

  • von Ruette J, Papritz A, Lehmann P, Rickli C, Or D (2011) Spatial statistical modeling of shallow landslides—Validating predictions for different landslide inventories and rainfall events. Geomorphology 133(1–2):11–22. doi:10.1016/j.geomorph.2011.06.010

    Article  Google Scholar 

  • von Ruette J, Lehmann P, Or D (2013) Rainfall-triggered shallow landslides at catchment scale: Threshold mechanics-based modeling for abruptness and localization. Water Resour Res 49(10):6266–6285. doi:10.1002/wrcr.20418

  • Yu B, Dalbey K, Webb A, Bursik M, Patra A, Pitman EB, Nichita C (2009) Numerical issues in computing inundation areas over natural terrains using Savage–Hutter theory. Nat Hazards 50(2):249–267

    Article  Google Scholar 

  • Zimmermann M, Mani P, Gamma P (1997) Murganggefahr und Klimaänderung: ein GIS-basierter Ansatz. Projektschlussbericht im Rahmen des Nationalen Forschungsprogrammes “Klimaänderungen und Naturkatastrophen”, NFP 31, vdf Hochschulverlag AG

Download references

Acknowledgments

This work is part of two linked projects “Local and regional hydrologic and geomorphic factors determining landslide patterns”, funded by Swiss National Science Foundation (SNSF), and “Triggering of Rapid Mass Movements in Steep Terrain” (TRAMM) funded by the Competence Center Environment and Sustainability (CCES) of the ETH Domain. We are grateful to Christian Rickli (Swiss Federal Institute for Forest, Snow and Landscape Research, WSL) for providing access to event-based landslide inventories (Napf and Prättigau) and thank Dr. Brian McArdell (WSL) and Prof. Marcel Hürlimann (BarcelonaTECH) for helpful discussions and support. We thank Fabian Rüdy for illustrations in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lehmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Ruette, J., Lehmann, P. & Or, D. Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides 13, 1097–1107 (2016). https://doi.org/10.1007/s10346-015-0621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0621-2

Keywords

Navigation