Skip to main content

Advertisement

Log in

Characterisation and spatial distribution of gravitational slope deformation in the Upper Rhone catchment (Western Swiss Alps)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The influence of gravitational slope deformation (GSD) on erosion rates and the shape of mountain belts has been identified worldwide, particularly in valleys affected by glacial retreat. However, due to a lack of understanding about the main predisposing factors influencing their spatial distribution, size and failure mechanisms, the effective impact of GSD on the evolution of the landscape remains difficult to quantify. This study presents the first detailed, regional-scale GSD inventory of the entire Upper Rhone catchment (western Switzerland). The detection and mapping of GSD are performed by combining different remote sensing approaches. Moreover, we propose a detailed characterisation of GSD, taking into account geometry, morphology and failure mechanisms. Based on these analyses, more than 300 GSD are identified, corresponding to 11 % of the entire study area. Spatial and statistical analyses indicate that GSD are not uniformly distributed across the study area: six GSD clusters are highlighted, containing more than 80 % of the GSD events detected. Our observations suggest that the distribution of GSDs is primarily related to coexisting active tectonic processes (including high uplift gradients and earthquake activity) and pre-existing regional-scale, tectonic weakness zones. The region’s lithological and structural conditions, on the other hand, appear largely to influence the failure mechanisms and the sizes of the GSD detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abele G. (1974) Bergstürze in den Alpen-ihre Verbritung, Morphologie und Folge erschinungen, Wissenschflitche Aplenvereinhefte, 25

  • Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59:83–102

    Article  Google Scholar 

  • Agliardi, F., Zanchi, A., Crosta, G. (2009) Tectonic vs. gravitational morphostructures in the central Eastern Alps (Italy): constraints on the recent evolution of the mountain range, Tectonophysics, 474, 250-270

  • Antinao JL, Gosse J (2009) Large rockslides in the Southern Central Andres of Chile (32-34.5°S): tectonic control and significance for quaternary landscape evolution. Geomorphology 104:117–133

    Article  Google Scholar 

  • Baddeley A, Moller J, Waagepetersen R (2000) Non- and semiparametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54:329–350

    Article  Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017

    Article  Google Scholar 

  • Besag J (1977) Discussion of Dr Ripley’s paper. J Roy Stat Soc B 39:193–195

    Google Scholar 

  • Besson O, Rouiller J-D, Frei W, Masson H (1992) Campagne de sismique-réflexion dans la Vallée du Rhone entre Sion et Martigny. Bull Murithienne 109:45–63

    Google Scholar 

  • Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Mary R, Duncan C (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379:505–510

    Article  Google Scholar 

  • Burri M. (1997) Géologie récente de Finges et dpses environs, Bulletin de la Maurithienne

  • Cendrero A, Dramis F (1996) The contribution of landslides to landscape evolution in Europe. Geomorphology 15:191–211

    Article  Google Scholar 

  • Champagnac JD, Sue C, Delacou B, Burkhard M (2003) Brittle orogen-parallel extension in the internal zones of the Swiss Alps (south Valais), Eclogae Geol Helv 96:325–338

    Google Scholar 

  • Chaytor JD, ten Brink US, Solow AR, Andrews BD (2009) Size distribution of submarine landslides along the U.S. Atlantic margin. Mar Geol 264:16–27

    Article  Google Scholar 

  • Clarke BA, Burbank DW (2010) Bedrock fracturing, threshold hillslopes and limits to the magnitude of bedrock landslide. Earth Planet Sci Lett 297:577–585

    Article  Google Scholar 

  • Cossart E, Braucher R, Fort M, Bourlès DL, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95:3–26

    Article  Google Scholar 

  • Crosta GB, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605:13–33

    Article  Google Scholar 

  • Crozier MJ (2010) Landslide geomorphology: an argument for recognition, with examples from New Zealand. Geomorphology 120:3–15

    Article  Google Scholar 

  • De Kemp A (1998) Three-dimensional projection of curvilinear geological features through direction cosine interpolation of structural field observations. Comput Geosci 24:269–284

    Article  Google Scholar 

  • Delacou B, Sue C, Champagnac JD, Burkhard M (2004) Present-day geodynamics in the bend of the Western and Central Alps as constrained by earthquake analysis. Geophys J Int 158:753–774

    Article  Google Scholar 

  • Dramis F, Sorriso-Valvo M (1994) Deep-seated gravitational slope deformations, related landslides and tectonics. Eng Geol 38:231–243

    Article  Google Scholar 

  • Eisbacher G.H., Clague J.J. (1984) Destructive mass movements in high mountains. Geological Survey of Canada, Paper 84-16.

  • Escher A, Beaumont C (1997) Formation, burial and exhumation of basement nappes at crustal scale: a geometric model based on the Western Swiss-Italian Alps. J Struct Geol 19:955–974

    Article  Google Scholar 

  • Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128

  • Fäh D., Giardini D., Kästli P., Deichmann N., Gisler M., Schwarz-Zanetti G., Alvarez-Rubio S., Sellami S., Edwards B., Allmann B., Bethmann F., Wössner J., Gassner-Stamm G., Fritsche S., Eberhard D. (2011) ECOS-09 earthquake catalogue of Switzerland release 2011 report and database. Public catalogue, 17 April 2011. Swiss Seismological Service ETH Zurich, Report SED/RISK/R/001/20110417

  • Fitzsimons SJ, Veit H (2001) Geology and geomorphology of the European Alps and the Southern Alps of New Zealand: a comparison. Mt Res Dev 21(4):340–349

    Article  Google Scholar 

  • Florineth D, Schlüchter C (1998) Reconstructing the last glacial maximum (LGM) ice surface geometry and flowlines in the Central Swiss Alps. Eclogae Geol Helv 91:391–407

    Google Scholar 

  • Forcella F, Orombelli G (1984) Holocene slope deformations in Valfurva, Central Alps, Italy. Geografia Fisica e Dinamica Quaternaria 7:41–48

    Google Scholar 

  • Fritsche S., Fäh D., Gisler M. Giardini D. (2006) Reconstructing the damage field of the 1855 earthquake in Switzerland: historical investigations on a well-documented event. Geophys J Int 166:719–731

  • Ghirotti M, Martin S, Genovois R (2011) The Celentino deep-seated gravitational slope deformation (DSGSD): structural and geomechanical analyses (Peio Valley, NE Italy). Geological Society Special Publications. In: Jaboyedoff M (ed) Slope tectonics, vol 351. Geological Society, London, pp 235–252

    Google Scholar 

  • Gisler M, Fäh D, Kästli P (2004) Historical seismicity in Central Switzerland. Eclogae Geol Helv 97:221–236

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena. Princeton University Press, Princeton, 245 p

    Google Scholar 

  • Guthrie RH, Evans SG (2004) Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf Process Landf 29:1321–1339

    Article  Google Scholar 

  • Hancox, G.T., Cox, S.C., Turnbull, I.M., Crozier, M.J. (2003) Reconnaissance studies of landslides and other ground damage caused by the Mw 7.2 Fiordland earthquake of 22 August 2003, Institute of Geological and Nuclear Sciences Science Report 2003/30, Lower Hutt

  • Heim A (1932) Bergsturz und Menschenleben. Fretz und Wasmuth, Zürich

    Google Scholar 

  • Hermanns RL, Niedermann S, Villanueva Garcia A, Sosa Gomez J, Strecker MR (2001) Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina. Geology 29:619–623

    Article  Google Scholar 

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186

    Article  Google Scholar 

  • Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25:231–234

    Article  Google Scholar 

  • Hutchinson J. N. (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Proceedings of the Fifth International Symposium on Landslides, Balkema, Rotterdam, pp 3–35

  • Ivy-Ochs S, Schäfer J, Kubik PW, Synal H-A, Schlüchter C (2004) Timing ofdeglaciation on the northern Alpine foreland (Switzerland). Eclogae Geol Helv 97:47–55

    Article  Google Scholar 

  • Jaboyedoff M, Derron M (2005) A new method to estimate the infilling of alluvial sediment of glacial valleys using a sloping local base level. Geografica Fisica e Dinamica Quaternaria 28:37–46

    Google Scholar 

  • Jaboyedoff M, Baillifard F, Derron M-H (2003) Preliminary note on uplift rates gradient, seismic activity and possible implications for brittle tectonics and rockslide prone areas: the example of western Switzerland. Bull Soc Vaud Sc nat 88:393–412

    Google Scholar 

  • Jaboyedoff M, Derron MH, Manby GM (2005) Note on seismic hazard assessment using gradient of uplift velocities in the Turan block (Central Asia). Nat Hazard Earth Syst Sci 5:43–47

    Article  Google Scholar 

  • Jarman D (2006) Large rock slope failures in the highlands of Scotland: characterisation, causes and spatial distribution. Eng Geol 83:161–182

    Article  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 2. Wiley, New York

    Google Scholar 

  • Kahle HG, Geiger A, Buerki B, Gubler E, Marti U, Wirth B, Rothacher M, Gurtner W, Beutler G, Bauersima I, Pfiffner OA (1997) Recent crustal movements, geoid and density distribution; contribution from integrated satellite and terrestrial measurements. In: Pfiffner OA, Lehner P, Heitzmann P, Mueller S, Steck A (eds) Deep structure of the Swiss Alps: results of NRP20. Birkhäuser, Verlag, pp 251–259

    Google Scholar 

  • Kastrup U., Zoback M. L., Deichmann N., Evans K., Giardini D., Michael A. J. (2004) Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversions of fault plane solutions. J. Geophys. Res., 109/B1, B01402

  • Keefer DK (1993) The susceptibility of rock slopes to earth-quake induced failure. Assoc Eng Geol Bull 30:353–361

    Google Scholar 

  • Kelly MA, Buoncristiani JF, Schlüchter C (2004) A reconstruction of the last glacial maximum (LGM) ice-surface geometry in the western Swiss Alps and contiguous Alpine regions in Italy and France. Eclogae Geol Helv 97:57–75

    Article  Google Scholar 

  • Korup O (2005) Distribution of landslides in southwest New Zealand. Landslides 1:43–51

    Article  Google Scholar 

  • Korup O, Schlunegger F (2007) Bedrock landslides, river incision, and transience of geomorphic hillslope-channel coupling: evidence from inner gorges in the eastern Swiss Alps. J Geophys Res 112:F03027

    Google Scholar 

  • Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261:578–589

    Article  Google Scholar 

  • Kreysig E. (1999) Advanced engineering mathematics, 8th edn. Wiley & Sons, New York, 1056 p

  • Kühni A, Pfiffner OA (2001) The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250 m DEM. Geomorphology 41:285–307

    Article  Google Scholar 

  • Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H, Dumont T, Gidon M, Bourbon M, Graciansky PC, Rudkiewicz JL, Mégard-Galli J, Tricart P (1986) The continental margin of the Mesozoic Tethys in the Western Alps. Mar Pet Geol 3:179–199

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landform 29:687–711

    Article  Google Scholar 

  • Mancktelow NS (1992) Neogene lateral extension during convergence in the Central Alps; evidence from interrelated faulting and backfolding around the Simplonpass; Switzerland. Tectonophysics 215:295–317

    Article  Google Scholar 

  • Masson H., Herb R., Steck A. (1980) Helvetic Alps of Western Switzerland, excursion no. 1. In: Trümpy, R.: Geology of Switzerland, part II—Wepf, Basel. Mancktelow N. S. 1990: The Simplon Fault Zone, Beitr. Geol. Karte CH 163 (n.F.), 74 p

  • Maurer H, Burkhard M, Deichmann N, Green AG (1997) Active tectonism in the Central Alps: contrasting stress regimes north and south of the Rhone Valley. Terra Nova 9:91–94

    Article  Google Scholar 

  • Meentemeyer RK, Moody A (2000) Automated mapping of alignment between topography and geologic bedding planes. Comput Geosci 26:815–829

    Article  Google Scholar 

  • Molnar P, Anderson RS, Anderson SP (2007) Tectonics, fracturing of rock, and erosion. J Geophys Res 112:F03014

    Google Scholar 

  • Montandon F (1933) Chronologie des grands éboulements alpins, du début de l’ère chrétienne à nos jours. Socité géographique Génève matériaux pour l’étude des calamités 32:271–340

    Google Scholar 

  • Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges, Earth Planet. Sci Lett 201:481–489

    Google Scholar 

  • Mosar J, Stampfli GM, Girod F (1996) Western Préalpes Médianes Romandes: timing and structure: a review. Eclogae Geol Helv 89:389–425

    Google Scholar 

  • Noverraz F. (1990) Répartition géographique, origine et contexte géologique des glissements de terrains latents en Suisse, Hydrology in Mountainous Regions. Artificial Reservoirs; Water and Slopes (Proceedings of two Lausanne Svmposia, August 1990). IAHS Publ. no. 194

  • Pedrazzini A. (2012) Characterization of gravitational rock slope deformations at different spatial scales based on field, remote sensing and numerical approaches. PhD thesis, Institute of Geomatics and Risk Analysis, University of Lausanne, 327 pp

  • Pedrazzini A., Jaboyedoff M., Ornstein P. (2009) Failure mechanisms analysis and reconstruction of pre-failure topography: examples of rockslide scars in Rhone valley, Switzerland. Geophysical Research Abstracts, 11, EGU2009-11934-2

  • Pedrazzini A, Jaboyedoff M, Loye A, Derron M-H (2013) From deep seated slope deformation to rock avalanche: destabilization and transportation models of the Sierre landslide (Switzerland). Tectonophysics 605:149–168

    Article  Google Scholar 

  • Pfiffner O.A., Lehner P., Heitzmann P., Mueller St. and Steck A. (Eds.) 1997 Deep structure of the Swiss Alps: results of NRP 20. Birkhäuser Verlag, 380 pp

  • Preusser F, Reitner JM, Schlüchter C (2010) Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. Swiss J Geosci 3:407–426

    Article  Google Scholar 

  • Reitner JM, Linner M (2009) Formation and preservation of large scale toppling related to alpine tectonic structures-eastern Alps. Austria J Earth Sci 120:69–80

    Google Scholar 

  • Ripley BD (1977) Modelling spatial patterns (with discussion). J R Stat Soc Ser B 39:172–212

    Google Scholar 

  • Ripley BD (1988) Statistical inference for spatial processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rosselli A, Olivier R (2003) Modélisation gravimétrique 2.5D et cartes des isohypses au 1:100’000 du substratum rocheux de la Vallée du Rhone entre Villeneuve et Brig (Suisse). Eclogae Geol Helv 96:399–423

    Google Scholar 

  • Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology 117:1–13

    Article  Google Scholar 

  • Sartori M (1987) Blocs basculés briançonnais en relation avec leur socle originel dans la nappe de Siviez-Mischabel (Valais, Suisse). Comptes Rendus des Séances de l’Académie des Sciences de Paris 305:999–1005

    Google Scholar 

  • Schlatter A., (2007) Das neue Landeshöhennetz der Schweiz LHN95; Geodätisch-geophysikalischeArbeiten in der Schweiz: Schweizerische Geodätische Kommission, v. 72, 373 p

  • Schlatter A, Schneider D, Geiger A, Kahle H (2005) Recent vertical movements from precise levelling in the vicinity of the city of Basel, Switzerland. Int J Earth Sci 94:507–514

    Article  Google Scholar 

  • Schmidt KM, Montgomery DR (1995) Limits to relief. Science 70:617–620

    Article  Google Scholar 

  • Schoneich P, Dorthe-Monachon C, Jaillet S, Ballandras S (1998) Le retrait glaciaire dans les Préalpes et les Alpes au Tardiglaciaire. Bull d’Ét Préhist et alpines de la vallée d’Aoste 9:23–37

    Google Scholar 

  • Sengezer B, Ansal A (2007) Probabilistic evaluation of observed earthquake damage data in Turkey. Nat Hazards 40:305–326

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New York

    Book  Google Scholar 

  • Steck A (1984) Structures et deformations tertiaries dans les Alpes centrales. Eclogae Geol Helv 77:55–100

    Google Scholar 

  • Steck A, Hunziker J (1994) The Tertiary structural and thermal evolution of the Central Alps; compressional and extensional structures in an orogenic belt. Tectonophysics 238:229–254

    Article  Google Scholar 

  • Steck A., Bigioggero B., Dal Piaz G.V., Escher A., Martinotti G., Masson H. (1999) Carte tectonique des Alpes de Suisse occidentales et des régions avoisinantes, 1:100000 [Tectonic map of the western Swiss Alps and neighbouring regions]. Special geological map no. 123, Service Géologique National, Bern

  • Steck A, Epard JL, Escher A, Gouffon Y, Masson H (2001) Carte tectonique des Alpes de Suisse occidentale et des regions avoisinantes 1:100000. Notice explicative [Tectonic map of the western Swiss Alps and neighbouring regions, explanatory note]. Service Géologique National, Bern, 73 pp

    Google Scholar 

  • Sue C, Touvenout F, Frechet J, Tricart P (1999) Widespread extension in the core of the Western Alps revealed by earthquake analysis. J Geophys Res B 104(11):25611–25622

    Article  Google Scholar 

  • Sue C, Delacou B, Champagnac J-D, Allanic C, Tricart P, Burkhard M (2007) Extensional neotectonics around the bend of the Western/Central Alps: an overview. Int J Earth Sci 6:1101–1129

    Article  Google Scholar 

  • Tonini M, Pedrazzini A, Penna I, Jaoboyedoff M (2014) Spatial pattern of landslides in Swiss Rhone Valley. Nat Hazards. doi:10.1007/s11069-012-0522-9

    Google Scholar 

  • Ustaszewski M., Pfiffner O. A. (2008) Neotectonic faulting, uplift and seismicity in the Central and Western Swiss Alps. In S. Sigmund et al. (Eds.), Tectonic aspects of the Alpine–Carpathian–Dinaride system. Geological Society of London Special Publication, 298, 231–249

  • Van Den Eeckaut M, Poesen J, Govers G, Verstraeten G, Demoulin A (2007) Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett 256:588–603

    Article  Google Scholar 

  • Vernon AJ, van der Beek PA, Sinclair HD (2009) Spatial correlation between long-term exhumation rates and present-day forcing parameters in the western European Alps. Geology 37:859–862

    Article  Google Scholar 

  • Zischinsky U (1969) Uber Sackungen. Rock Mech 1:30–52

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Swiss National Science Foundation (grant number 200021-118105). The authors are deeply indebted to Alexander Loye and Marc-Henri Derron for fruitful discussions. This paper benefited from the proofreading of Darren Hart and the comments of four anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pedrazzini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrazzini, A., Humair, F., Jaboyedoff, M. et al. Characterisation and spatial distribution of gravitational slope deformation in the Upper Rhone catchment (Western Swiss Alps). Landslides 13, 259–277 (2016). https://doi.org/10.1007/s10346-015-0562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0562-9

Keywords

Navigation