Skip to main content
Log in

Slope instability processes in intensely fissured clays: case histories in the Southern Apennines

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In slopes formed by tectonized clayey turbidites, the soil fissuring recurrently influences the hydro-mechanical soil properties, determining an impoverishment in strength and an increase in permeability of the slope that make them predisposing factors of landsliding. This paper presents three case histories of slopes within tectonized clayey turbidites that are representative of several others in the Southern Apennines and, more widely, in the southern Mediterranean. The paper reports a novel attempt to connect tightly the slope geomorphological and hydro-mechanical features to the slope geological history, through an introductory presentation of the geological setting and history of the chain where the slopes occur. The slopes, location of very slow landslides, have been reconstructed based upon field surveys and investigations, multi-aerial photo-interpretation, laboratory testing, monitoring and numerical modelling. Furthermore, novel is the attempt to present, all together, the behaviour of the soils involved in the three landslide case studies, in the light of the mechanical modelling approach to fissured clays recently presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A:

Activity

A-B-C:

Source, channel and accumulation zones of Vadoncello landslides

A-C-C9-F-G-L:

Labels for Pisciolo landslide bodies

A-F:

In situ soil complexes within Vadoncello slope

BENT:

Bentonite clay

c′:

Cohesion intercept

CF:

Clay fraction

C k :

Permeability change index

e :

Void ratio

FAE:

Faeto Flysch

F-ID:

Fissuring IDentity

G-I:

Landslide soil complexes within Vadoncello slope

ICL:

Intrinsic compression line

INCL*:

Isotropic normal consolidation line of the reconstituted clay

k s :

Saturated permeability

N:

Numidian Flysch

p′:

Mean effective stress

p*e :

Equivalent mean effective stress on the INCL*

py :

Mean effective stress at yield in isotropic compression

PD:

Paola Doce Formation

PD1:

Lower unit of Paola Doce Formation

PD2:

Upper unit of Paola Doce Formation

PI:

Pisciolo hillslope

PI:

Plasticity Index

R :

Overconsolidation ratio: py/p

REV:

Representative element volume

RF:

Red Flysch

SBS:

State boundary surface of natural clay

SBS*:

State boundary surface of reconstituted clay

SCM:

Santa Croce di Magliano slopes

SEN:

Vadoncello slope

SF:

Sand fraction

S σ :

Stress sensitivity ratio: py/p*e

USCS:

Unified Soil Classification System

ε v p :

Plastic volumetric strain

ϕ *cs :

Critical state friction angle of the reconstituted clay

ϕ cs :

Critical state friction angle of the natural clay

ϕ m :

Mobilised friction angle

ϕ peak :

Friction angle at peak for natural clay

ϕ post − peak :

Friction angle at post-peak for natural clay

ϕ r :

Residual friction angle

ν :

Specific volume

References

  • AGI (1979) Some Italian experiences on the mechanical characterisation of structurally complex clay soils. In International Society of Rock Mechanics (ed.), Int Soc Rock Mech 4th Int Cong 1, pp 827–846

  • Airò Farulla C, Ferrari A, Romero E (2010) Volume change behaviour of a compacted scaly clay during cyclic suction changes. Can Geotech J 47(6):688–703

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapo-transpiration, guidelines for computing crop water requirements. FAO irrigation and drainage paper 56

  • ASTM (1985) Classification of soils for engineering purposes: annual book of ASTM Standards, D 2487-83, 04.08, American Society for Testing and Materials, pp 395–408

  • BSI British Standards (1986) Code of practice for foundations. BSI BS8004

  • Burland JB (1990) On the compressibility and the shear strength of natural clays. Geotechnique 40(3):329–378

    Article  Google Scholar 

  • Calabresi G, Manfredini G (1973) Shear strength characteristics of the jointed clay of S. Barbara. Geotechnique 23(2):233–244

    Article  Google Scholar 

  • Cicolella A, Picarelli L (1990) Decadimento meccanico di una tipica argilla a scaglie di elevata plasticità. Ital Geotech J 24:5–23

    Google Scholar 

  • Cotecchia V (1986) Ground displacement and slope instability triggered off by the earthquake of November 23, 1980 in Campania and Basilicata. Int Symp Engineering geology problems in seismic areas. Geol Appl Idrogeol 21:31–100

  • Cotecchia F, Chandler RJ (2000) A general framework for the mechanical behaviour of clays. Geotechnique 50(4):431–447

    Article  Google Scholar 

  • Cotecchia F, Santaloia F (2003) Compression behaviour of structurally complex marine clays. Soft Ground Engineering in Coastal Areas; Proc Nakase Memorial Symp, Yokosuka Japan, pp 63–72

  • Cotecchia F, Vitone C (2011) On the model requirements to predict the behaviour of fissured clays. XV ECSMGE, Athens, pp 525–530

    Google Scholar 

  • Cotecchia F, Santaloia F, Santoro F (2000) Movements in a tectonized soil slope: comparison of monitoring data and modelling results. Int Conf Geotechnical & Geological Engineering, Melbourne

    Google Scholar 

  • Cotecchia F, Cafaro F, Melidoro G, Mitaritonna G (2003) Mechanical behaviour of natural tectonized bentonites. Proc Int Workshop Geotechnics of Soft Soils, Amsterdam, pp 397–402

    Google Scholar 

  • Cotecchia F, Vitone C, Cafaro F, Santaloia F (2007) The mechanical behaviour of intensely fissured high plasticity clays from Daunia. Proc 2nd Int Workshop Characterisation and Engineering Properties on Natural Soils, Singapore, Taylor & Francis London, pp 1975–2003

  • Cotecchia F, Mitaritonna G, Elia G, Santaloia F, Lollino P (2009) Meccanismi di frane in pendi in argille dell’Italia Meridionale ed effetti delle precipitazioni meteoriche. 1st Int Workshop on Landslides: rainfall induced landslide and nowcasting models for early warning system, pp 31–43

  • Cotecchia F, Santaloia F, Vitone C, Palladino G (2012) A slow and complex landslide process in the Southern Apennines (Italy). Proceedings 11th Int Symp Landslides and 2nd North American Symp Landslides. Banff, Alberta, Canada, in Landslides and Engineered Slopes: Protecting Society through Improved Understanding, Taylor & Francis Group 1, pp 1009–1016

  • Cotecchia F, Pedone G, Bottiglieri O, Santaloia F, Vitone C (2014) Slope—atmosphere interaction in a tectonized clayey slope: a case study. Ital Geotech J 1:34–61

    Google Scholar 

  • Croce A (1971) Opening address of the International Symposium on ‘The Geotechnics of structurally complex formations’. Capri 2:148–151

    Google Scholar 

  • Desrues J, Viggiani G (2004) Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int J Numer Anal Meth Geomech 28:279–321

    Article  Google Scholar 

  • Dewey JF, Helman ML, Turco E, Hutton DHW and Knott SD (1989) Kinematics of the Western Mediterranean. In MPD Coward, D Park, RG (Editor), Alpine Tectonics. Geological Society, pp 265–283

  • Di Nocera S, Matano F, Pescatore T, Pinto F, Quarantiello R, Senatore MR, Torre M (2006) Schema geologico del transetto Monti Picentini orientali - Monti della Daunia meridionali: unità stratigrafiche ed evoluzione tettonica del settore esterno dell’Appennino meridionale. Boll Soc Geol Ital 125:1–20

    Google Scholar 

  • Doglioni C (1991) A proposal of kinematic modelling for W-dipping subduction—possible applications to the Tyrrhenian Apennines system. Terra Nova 3:423–434

    Article  Google Scholar 

  • Fearon R, Coop MR (2000) Reconstitution—what makes an appropriate reference material? Geotechnique 50(4):471–477

    Article  Google Scholar 

  • Fearon R, Coop MR (2002) The influence of landsliding on the behaviour of a structurally complex clay. Q J Eng Geol Hydrogeol 35:25–32

    Article  Google Scholar 

  • Federico F, Musso A (1990) Consolidazione monodimensionale di argille a scaglie. Gruppo Nazionale di coordinamento per gli studi di Ingegneria Geotecnica, Roma, pp 127–130

    Google Scholar 

  • Fenelli GB, Paparo Filomarino M, Picarelli L, Rippa F (1982) Proprietà fisiche e meccaniche di argille varicolori dell’Irpinia. Riv Ital Geotecnica 3:110–124

    Google Scholar 

  • Fookes PG, Denness B (1969) Observational studies on fissure patterns in cretaceous sediments of South-East England. Geotechnique 19(4):453–477

    Article  Google Scholar 

  • Gasparre A, Nishimura S, Coop MR, Jardine RJ (2007) The influence of structure on the behaviour of London Clay. Geotechnique 57(1):19–31

    Article  Google Scholar 

  • Hight DW, Gasparre A, Nishimura S, Minh NA, Jardine RJ, Coop MR (2007) Characteristics of the London Clay from the Terminal 5 site at Heathrow airport. Geotechnique 57(1):3–18

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • GEO-SLOPE International Ltd (2004) Seepage modeling with SEEP/W, user’s guide. Calgary, Alberta, Canada

  • ISRM (1993) Metodologie per la descrizione quantitativa delle discontinuità nelle masse rocciose. Ital Geotech J 2:151–197

    Google Scholar 

  • Itasca Consulting Group (2000) FLAC2D Version 4.0. Minneapolis: Itasca Consulting Group

  • Leroueil S, Vaughan P (1990) The general and congruent effect of structure in natural soils and weak rocks. Geotechnique 40(3):467–488

    Article  Google Scholar 

  • Lo KY (1970) The operational strength of fissured clays. Geotechnique 20(1):57–74

    Article  Google Scholar 

  • Lupini JF, Skinner AE, Vaughan PR (1981) The drained residual strength of cohesive soils. Geotechnique 31(2):181–213

    Article  Google Scholar 

  • Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–245

    Article  Google Scholar 

  • Marsland A (1971) The shear strength of stiff fissured clays. Roscoe Memorial Symp, Cambridge Univ, pp 59–68

  • Melidoro A, Melidoro G, Panaro V (2002) Deformazioni gravitative dei versanti nei terreni fliscioidi con argille a bentoniti di Santa Croce di Magliano (Molise). Quarry & Construction:11–17

  • Morgenstern NR, Eigenbrod KD (1974) Classification of argillaceous soils and rocks. J Geotech Eng Div ASCE 100(10):1137–1156

    Google Scholar 

  • Morgenstern NR, Price VE (1965) The analysis of the stability of general slip surface. Geotechnique 15(1):79–93

    Article  Google Scholar 

  • Ogniben L (1969) Schema introduttivo alla geologia del confine calabro-lucano. Mem Soc Geol Ital 8:453–763

    Google Scholar 

  • Parotto M, Praturlon A (2004) The Southern Apennine Arc. In U. Crescenti, S. D’Offizi, S. Merlino & L. Sacchi (eds), Geology of Italy, Special Volume of Italian Geological Society for the International Geological Congress 32:33–58

  • Patacca E, Scandone P (2007) Geological interpretation of the CROP-04 seismic line (Southern Apennines, Italy). In: Mazzotti A, Patacca E, Scandone P(Eds), Results of the CROP Project, Sub-project CROP-04 So 7, pp 297–315

  • Pedone G (2014) Interpretation of slow and deep landslides triggered by slope-atmosphere interaction in slopes formed of fissured clayey turbidites. PhD thesis, Technical University of Bari, Italy

  • Pellegrino A, Picarelli L (1982) Contributo alla caratterizzazione geotecnica di formazioni argillose intensamente tettonizzate. Geol Appl Idrogeol 20(2):155–192

    Google Scholar 

  • Pescatore T, Senatore MR (1986) A comparison between a present-day (Taranto Gulf) and a Miocene (Irpinian Basin) foredeep of the Southern Apennines (Italy). Spec Publ Int Ass Sediment 8:169–182

    Google Scholar 

  • Pescatore T, Renda P, Schiattarella M, Tramutoli M (1999) Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy. Tectonophysics 315:269–286

    Article  Google Scholar 

  • Pescatore T, Di Nocera S, Matano F, Pinto F (2000) L’Unità del Fortore nel quadro della geologia orientale dei Monti del Sannio (Appennino Meridionale). Boll Soc Geol Ital 119:587–601

    Google Scholar 

  • Petley DJ (1984) Shear strength of over-consolidated fissured clay. Landslides. Proc Int Symp 2:167–172

    Google Scholar 

  • Picarelli L, Olivares L (2004) Mechanical behaviour of highly sheared clay shales. Advances in geotechnical engineering: the Skempton conference—advances in geotechnical engineering, ICEl, pp 580-591

  • EC Project Report (1996) Landslide evolution controlled by climatic factors in a seismic area. Prediction methods and warning criteria. Final Technical Report

  • Richards LA (1931) Capillary conduction of liquids through porous media. Physics 1:318–333

    Article  Google Scholar 

  • Santaloia F, Cotecchia F, Polemio M (2001) Mechanics of a tectonized soil slope: influence of boundary conditions and rainfalls. Q J Eng Geol 34:165–185

    Article  Google Scholar 

  • Santoro F (1999) Meccanismi di deformazione di pendii in formazioni strutturalmente complesse. Il caso della frana Serra dell’Acquara – Vadoncello (Senerchia – AV). PhD thesis, Technical University of Bari, Italy

  • Schofield AN, Wroth CP (1968) Critical state soil mechanics. McGraw-Hill, London

    Google Scholar 

  • Scrocca D, Carminati E, Doglioni C (2005) Deep structure of the southern Apennines, Italy: thin-skinned or thick-skinned? Tectonics 24:1–20

    Article  Google Scholar 

  • Sella N, Dorci C, Riva A (1988) Sintesi geopetrolifera della Fossa Bradanica (avanfossa della catena appenninica meridionale). Mem Soc Geol Ital 41:87–107

    Google Scholar 

  • Silvestri F, Vitone C, d’Onofrio A, Cotecchia F, Puglia R, Santucci de Magistris F (2007) The influence of meso-structure on the mechanical behaviour of a marly clay from low to high strains. Geotechnical Tatsuoka Symposium, Rome, Hoe I Ling et al eds, Soil Stress-Strain Behaviour: Measurement, Modelling, Analysis, Springer, the Netherlands, pp 333–350

  • Stark T, Hussain M (2013) Empirical correlations: drained shear strength for slope stability analyses. J Geotech Geoenviron Eng 139(6):853–862

    Article  Google Scholar 

  • Taylor DW (1948) Fundamentals of soil mechanics. Wiley, New York

    Google Scholar 

  • Terzaghi K (1923) Die Berechnung der DurchlaÈssigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzungber. Akad Wiss Wien 132:125–138

    Google Scholar 

  • Terzaghi K (1936) Stability of slopes in natural clays. Proc. 1st Conf. On Soil Mechanics, Harvard, 1: 161–185

  • Terzaghi K (1950) Mechanisms of landslides. Geological Society of America, Berkley, pp 83–123

  • Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  • van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Vitone C (2005) Comportamento meccanico delle argille da intensamente a mediamente fessurate. PhD thesis, Technical University of Bari, Italy

  • Vitone C, Cotecchia F (2011) The influence of intense fissuring on the mechanical behaviour of clays. Geotechnique 61(12):1003–1018

    Article  Google Scholar 

  • Vitone C, Cotecchia F, Desrues J, Viggiani G (2009) An approach to the interpretation of the mechanical behaviour of intensely fissured clays. Soils Found J 49(3):355–368

    Article  Google Scholar 

  • Vitone C, Cotecchia F, Viggiani G (2012) Localisation processes and size effects for fissured clay specimens. Advanced Multiphysical Testing of Soils and Shales (AMTSS) Workshop In Springer Series in Geomechanics and Geoengineering, Laloui Ferrari Eds, pp 219–225

  • Vitone C, Cotecchia F, Viggiani G, Hall SA (2013a) Strain fields and mechanical response of a highly fissured bentonite clay. Int J Numer Anal Methods Geomech 37:1510–1534

    Article  Google Scholar 

  • Vitone C, Viggiani G, Cotecchia F, Hall SA (2013b) Localized deformation in intensely fissured clays studied by 2D digital image correlation. Acta Geotech 8:247–263

    Article  Google Scholar 

  • Walker BF, Blong RJ, McGregor JP (1987) Landslide classification, geomorphology and site investigation. Soil slope instability and stabilisation. Balkema, The Netherlands, pp 1–5

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Apulian Aqueduct SpA (2008–2011), the Apulia Region (PS_119 2006–2010), the Italian Ministry for Research and University (PRIN 2001, 2007, 2010–2011) and European Community-Environment Programme (1994–1996) for providing the financial support that has permitted the studies discussed in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Vitone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotecchia, F., Vitone, C., Santaloia, F. et al. Slope instability processes in intensely fissured clays: case histories in the Southern Apennines. Landslides 12, 877–893 (2015). https://doi.org/10.1007/s10346-014-0516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0516-7

Keywords

Navigation