Skip to main content
Log in

Compensating freshwater habitat loss—duck productivity and food resources in man-made wetlands

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

A Correction to this article was published on 25 May 2022

This article has been updated

Abstract

The number of wetlands in Europe decreased by more than 60% by the 1990s compared with the beginning of the twentieth century. Man-made wetlands may be an effective way to compensate for the loss and degradation of freshwater ecosystems. This loss impacts the populations of declining duck species, partly due to a lack of suitable breeding opportunities. In this study, we evaluated duck productivity and invertebrate abundance in 13 man-made Finnish wetlands that were created for waterbirds. Our findings revealed that man-made wetlands have higher duck production than average natural boreal lakes. High invertebrate levels were a key factor that positively correlated with duck pair density, brood density, duckling density of the common teal (Anas crecca), and duck density during the post-breeding period. Our results suggest that man-made wetlands are a useful tool for increasing duck productivity. For upholding this status in the long term, appropriate management should involve maintaining sufficient invertebrate levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  • Aapala K, Lappalainen I (1998) Suot – uusiutumaton luonnonvara. In: I. Lappalainen (ed), Suomen luonnon monimuotoisuus. Helsinki: Oy Edita Ab 174–183

  • Albrecht T, Musil P, Cepák J (2000) Habitat selection of waterfowl broods on intensively managed fishponds in the Czech Republic (Limnological review). Sylvia 36:18

    Google Scholar 

  • Amezaga JM, Santamaría L, Green AJ (2002) Biotic wetland connectivity—supporting a new approach for wetland policy. Acta Oecol 23:213–222

    Article  Google Scholar 

  • Anderson G (1981) Influence of fish on waterfowl in lakes. Anser 20:21–34

    Google Scholar 

  • Arzel C, Dessborn L, Pöysä H, Elmberg J, Nummi P, Sjöberg K (2014) Early springs and breeding performance in two sympatric duck species with different migration strategies. Ibis 156:288–298

    Article  Google Scholar 

  • Arzel C, Rönkä M, Tolvanen H, Aarras N, Kamppinen M, Vihervaara P (2015) Species diversity, abundance and brood numbers of breeding waterbirds in relation to habitat properties in an agricultural watershed. Ann Zool Fenn 52:17–32

    Article  Google Scholar 

  • Bendell BE, McNicol DK (1995) The diet of insectivorous ducklings and the acidification of small Ontario lakes. Can J Zool 73:2044–2051

    Article  Google Scholar 

  • Bloom PM, Clark RG, Howerter DW, Armstrong LM (2013) Multi-scale habitat selection affects offspring survival in a precocial species. Oecol 173:1249–1259

    Article  CAS  Google Scholar 

  • Boere GC, Galbraith CA, Stroud DA (eds) (2006) Waterbirds around the world. The Stationery Office, Edinburgh

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9:378–400

    Article  Google Scholar 

  • Brzeziński M, Żmihorski M, Nieoczym M, Wilniewczyc P, Zalewski A (2020) The expansion wave of an invasive predator leaves declining waterbird populations behind. Divers Distrib 26:138–150

    Article  Google Scholar 

  • Céréghino R, Ruggiero A, Marty P, Angélibert S (2007) Biodiversity and distribution patterns of freshwater invertebrates in farm ponds of a south-western French agricultural landscape. Pond Conservation in Europe. Springer, Dordrecht, pp 43–51

    Chapter  Google Scholar 

  • Coccia C, Vanschoenwinkel B, Brendonck L, Boyero L, Green AJ (2016) Newly created ponds complement natural waterbodies for restoration of macroinvertebrate assemblages. Freshwat Biol 61:1640–1654

    Article  Google Scholar 

  • Collen B, Whitton F, Dyer EE, Baillie JE, Cumberlidge N, Darwall WR, Pollock C, Richman NI, Soulsby AM, Böhm M (2014) Global patterns of freshwater species diversity, threat and endemism. Glob Ecol Biogeogr 23:40–51

    Article  PubMed  Google Scholar 

  • Costanza R, De Groot R, Sutton P, Van der Ploeg S, Anderson SJ, Kubiszewski I, Turner RK (2014) Changes in the global value of ecosystem services. Global Env Change 26:152–158

    Article  Google Scholar 

  • Čížková H, Květ J, Comín FA, Laiho R, Pokorný J, Pithart D (2013) Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci 75:3–26

    Article  CAS  Google Scholar 

  • Danell K, Sjο̈berg K (1979) Decomposition of Carex and Equisetum in a northern Swedish lake: dry weight loss and colonization by macro-invertebrates. J Ecol 67:191–200

    Article  Google Scholar 

  • Danell K, Sjöberg K (1982) Successional patterns of plants, invertebrates and ducks in a man-made lake. J Appl Ecol 19:395–409

    Article  Google Scholar 

  • Darwall WRT, Smith KG, Allen D, Seddon MB, McGregor Reid G, Clausnitzer V, Kalkman VJ (2009) Freshwater biodiversity: a hidden resource under threat. In: Vié J-C, Hilton-Taylor C, Stuart SN (eds) Wildlife in a Changing World. IUCN, Gland, pp 43–54

    Google Scholar 

  • Decarie R, Morneau F, Lambert D, Carriere S, Savard JPL (1995) Habitat use by brood-rearing waterfowl in subarctic Quebec. Arctic 48:383–390

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  PubMed  Google Scholar 

  • Elmberg J, Nummi P, Pöysä H, Sjöberg K (1992) Do intruding predators and trap position affect the reliability of catches in activity traps? Hydrobiologia 239:187–193

    Article  Google Scholar 

  • Elmberg J, Nummi P, Pöysä H, Sjöberg K (1993) Factors affecting species number and density of dabbling duck guilds in North Europe. Ecography 16:251–260

    Article  Google Scholar 

  • Eriksson MOG (1979) Competition between freshwater-fish and goldeneyes Bucephala clangula (L) for common prey. Oecol 41:99–107

    Article  Google Scholar 

  • Eriksson MOG (1983) The role of fish in the selection of lakes by nonpiscivorous ducks: mallard, teal and goldeneye. Wildfowl 34:27–32

    Google Scholar 

  • Gibbs JP (1993) Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands 13:1325–1331

    Article  Google Scholar 

  • Gibbs JP (2000) Wetland loss and biological conservation. Conser Biol 14:314–317

    Article  Google Scholar 

  • Green AJ, Elmberg J (2014) Ecosystem services provided by waterbirds. Biol Rev 89:105–122

    Article  PubMed  Google Scholar 

  • Guareschi S, Laini A, Viaroli P, Bolpagni R (2020) Integrating habitat-and species-based perspectives for wetland conservation in lowland agricultural landscapes. Biodivers Conserv 29:153–171

    Article  Google Scholar 

  • Guillemain M, Pöysä H, Fox AD, Arzel C, Dessborn L, Ekroos J, Gunnarsson G, Holm TE, Christensen TK, Lehikoinen A, Mitchell C, Rintala J, Møller AP (2013) Effects of climate change on European ducks: what do we know and what do we need to know? Wildl Biol 19:404–419

    Article  Google Scholar 

  • Gunnarsson G, Elmberg J, Sjöberg K, Pöysä H, Nummi P (2004) Why are there so many empty lakes? Food limits survival of mallard ducklings. Can J Zool 82:1698–1703

    Article  Google Scholar 

  • Haas K, Köhler U, Diehl S, Köhler P, Dietrich S, Holler S, Jensch A, Niedermaier M, Vilsmeier J (2007) Influence of fish on habitat choice of water birds: a whole-system experiment. Ecology 88:2915–2925

    Article  PubMed  Google Scholar 

  • Hessen DO, Jensen TC, Walseng B (2019) Zooplankton diversity and dispersal by birds; insights from different geographical scales. Front Ecol Evol 7:74

    Article  Google Scholar 

  • Hilli-Lukkarinen M, Kuitunen M, Suhonen J (2011) The effect of changes in land use on waterfowl species turnover in Finnish boreal lakes. Ornis Fenn 88:185–194

    Google Scholar 

  • Holopainen S, Arzel C, Dessborn L, Elmberg J, Gunnarsson G, Nummi P, Pöysä H, Sjöberg K (2015) Habitat use in ducks breeding in boreal freshwater wetlands: a review. Eur J Wildl Res 61:339–363

    Article  Google Scholar 

  • Holopainen S, Nummi P, Pöysä H (2014a) Breeding in the stable boreal landscape: lake habitat variability drives brood production in the Teal (Anas crecca). Freshwat Biol 59:2621–2631

    Article  Google Scholar 

  • Holopainen S, Nummi P, Pöysä H (2014b) Sorsien lisääntymisaikainen elinympäristön käyttö boreaalisilla järvillä: kasvillisuuden rakenteen, ravinnon ja majavatulvan vaikutukset. Suomen Riista 60:95–105 (In Finnish with English summary)

  • Holopainen S, Arzel C, Elmberg J, Fox AD, Guillemain M, Gunnarsson G, Nummi P, Sjöberg K, Väänänen VM, Alhainen M, Pöysä H (2018) Sustainable management of migratory European ducks: finding model species. Wildl Biol:wlb.00336

  • Holopainen S, Väänänen V-M, Fox AD (2021) Alien predators pose a high risk for duck nests in Northern Europe – an artificial nest experiment. Biol Inv. https://doi.org/10.1007/s10530-021-02608-2

    Article  Google Scholar 

  • Junk WJ, An S, Finlayson C, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167

    Article  CAS  Google Scholar 

  • Kačergytė I, Arlt D, Berg Å, Żmihorski M, Knape J, Rosin ZM, Pärt T (2021) Evaluating created wetlands for bird diversity and reproductive success. Biol Cons 257:109084 ISSN 0006–3207. https://doi.org/10.1016/j.biocon.2021.109084.

  • King RS, Wrubleski DA (1998) Spatial and diel availability of flying insects as potential duckling food in prairie wetlands. Wetlands 18:10–14

    Article  Google Scholar 

  • Kingsford RT, Basset A, Jackson L (2016) Wetlands: conservation’s poor cousins. Aquat Conservat: Mar Freshwat Ecosyst 26:892–916

    Article  Google Scholar 

  • Koskimies P, Väisänen RA (1991) Monitoring bird populations: a manual of methods applied in Finland. Zoological Museum, Finnish Museum of Natural History, Helsinki, Finland

  • Kuusisto E, Bäck S, Vuoristo H, Mannio J, Lappalainen I (1998) Vesiluonto osana ihmisen taloutta (In Finnish). In: I. Lappalainen (ed), Suomen luonnon monimuotoisuus. Helsinki: Oy Edita Ab 97–211

  • Larmola T, Alm J, Juutinen S, Saarnio S, Martikainen PJ, Silvola J (2004) Floods can cause large interannual differences in littoral net ecosystem productivity. Limnol Oceanogr 49:1896–1906

    Article  CAS  Google Scholar 

  • Lehikoinen A, Rintala J, Lammi E, Pöysä H (2016) Habitat-specific population trajectories in boreal waterbirds: alarming trends and bioindicators for wetlands. Anim Conserv 19:88–95

    Article  Google Scholar 

  • Lehikoinen P, Lehikoinen A, Mikkola-Roos M, Jaatinen K (2017) Counteracting wetland overgrowth increases breeding and staging bird abundances. Scient Rep 7:41391. https://doi.org/10.1038/srep41391.

  • Lods-Crozet B, Castella E (2009) Colonisation by midges (Chironomidae, Diptera) of recently-created shallow ponds: implications for the restoration of lacustrine fringing wetlands. Ann Limnol Int J Limnol 45:257–266

    Article  Google Scholar 

  • LUKE (2021) Vesilintuseurantojen tulokset. Luonnonvarakeskuksen tilastotietokanta. https://www.luke.fi/tietoa-luonnonvaroista/riista/vesilinnut/vesilintuseurantojen-tulokset/ (In Finnish)

  • Millennium Ecosystem Assessment (2005) Ecosystems and Human well-being: biodiversity synthesis. Millennium Ecosystem Assessment. World Resources Institute: Washington, DC

  • Mitsch WJ, Bernal B, Hernandez ME (2015) Ecosystem services of wetlands. Int J Biodiv Sci Ecosyst Ser Manag 11:1–4

    Google Scholar 

  • Monda MJ, Ratti JT (1988) Niche overlap and habitat use by sympatric duck broods in eastern Washington. J Wildl Manage 52:95–103

    Article  Google Scholar 

  • Murillo-Pacheco J, López-Iborra GM, Escobar F, Bonilla-Rojas WF, Verdú JR (2018) The value of small, natural and man-made wetlands for bird diversity in the east Colombian Piedmont. Aquat Conservat: Mar Freshwat Ecosyst 28:87–97

    Article  Google Scholar 

  • Musil P (2000) Trends in water bird breeding population in the Czech Republic: an indicator of change of trophic state in fishponds. Sylvia 36:15

    Google Scholar 

  • Nudds TD, Bowlby JN (1984) Predator–prey size relationships in North American dabbling ducks. Can J Zool 62:2002–2008

    Article  Google Scholar 

  • Nummi P (1989) Simulated effects of the beaver on vegetation, invertebrates and ducks. Ann Zool Fenn 26:43–52

    Google Scholar 

  • Nummi P (1993) Food–niche relationships of sympatric mallards and green-winged teals. Can J Zool 71:49–55

    Article  Google Scholar 

  • Nummi P (1992) The importance of beaver ponds to waterfowl broods: an experiment and natural tests. Ann Zool Fenn 29:47–55

    Google Scholar 

  • Nummi P, Hahtola A (2008) The beaver as an ecosystem engineer facilitates teal breeding. Ecography 31:519–524

    Article  Google Scholar 

  • Nummi P, Holopainen S (2014) Whole-community facilitation by beaver: ecosystem engineer increases waterbird diversity. Aquat Conservat: Mar Freshwat Ecosyst 24:623–633

    Article  Google Scholar 

  • Nummi P, Holopainen S (2020) Restoring wetland biodiversity using research: whole-community facilitation by beaver as framework. Aquat Conservat: Mar Freshwat Ecosyst 30:1798–1802

    Article  Google Scholar 

  • Nummi P, Holopainen S, Rintala J, Pöysä H (2015) Mechanisms of density dependence in ducks: importance of space and per capita food. Oecol 177:679–688

    Article  Google Scholar 

  • Nummi P, Pöysä H (1993) Habitat associations of ducks during different phases of the breeding season. Ecography 16:319–328

    Article  Google Scholar 

  • Nummi P, Pöysä H (1995a) Habitat use by different-aged duck broods and juvenile ducks. Wildl Biol 1:181–187

    Article  Google Scholar 

  • Nummi P, Pöysä H (1995b) Breeding success of ducks in relation to different habitat factors. Ibis 137:145–150

    Article  Google Scholar 

  • Nummi P, Pöysä H (1997) Brood production of ducks in southern Finland. Suomen Riista 43:65–71 (In Finnish with English summary)

    Google Scholar 

  • Nummi P, Pöysä H (1997b) Population and community level responses in Anas species to patch disturbance caused by an ecosystem engineer, the beaver. Ecography 20:580–584

    Article  Google Scholar 

  • Nummi P, Väänänen V-M (2001) High overlap in diets of sympatric dabbling ducks: an effect of food abundance? Ann Zool Fenn 38:123–130

    Google Scholar 

  • Nummi P, Sjöberg K, Pöysä H, Elmberg J (2000) Individual foraging behaviour indicates resource limitation: an experiment with mallard ducklings. Can J Zool 78:1891–1895

    Article  Google Scholar 

  • Nummi P, Väänänen V-M, Rask M, Nyberg K, Taskinen K (2012) Competitive effects of fish in structurally simple habitats: perch, invertebrates, and goldeneye in small boreal lakes. Aquat Sci 74:343–350. https://doi.org/10.1007/s00027-011-0225-4

    Article  Google Scholar 

  • Nummi P, Paasivaara A, Suhonen S, Pöysä H (2013) Wetland use by brood-rearing female ducks in a boreal forest landscape: the importance of food and habitat. Ibis 155:68–79

    Article  Google Scholar 

  • Nummi P, Väänänen V-M, Holopainen S, Pöysä H (2016) Duck-fish competition in boreal lakes – a review. Ornis Fennica 93:67–76

    Google Scholar 

  • Nummi P, Väänänen V-M, Pekkarinen A-J, Eronen V, Mikkola-Roos M, Nurmi J, Rautiainen A, Rusanen P (2019a) Alien predation in wetlands – raccoon dog and the breeding success of waterbirds. Balt for 25:228–237

    Article  Google Scholar 

  • Nummi P, Suontakanen EM, Holopainen S, Väänänen V-M (2019b) The effect of beaver facilitation on Common Teal: pairs and broods respond differently at the patch and landscape scales. Ibis 161:301–309

    Article  Google Scholar 

  • Nummi P, Liao W, van der Schoor J, Loehr J (2021) Beaver creates early successional hotspots for water beetles. Biod Conserv 30:2655–2670

    Article  Google Scholar 

  • Pickett STA, Rogers KH (1997) Patch dynamics: the transformation of landscape structure and function. Wildlife and landscape ecology. Springer, New York, NY 101–127

  • Pirkola MK, Hogmander J (1974) Sorsapoikueiden Iänmääritys Suomen Riista 25:50–55 (in Finnish with English summary)

  • Porte DS, Gupta S (2018) Status and diversity of wetland birds at ancient township Ratanpur of Chhattisgarh, India. Amb Sci 5:12–17

    Google Scholar 

  • Pöysä H, Lammi E, Pöysä S, Väänänen V-M (2019a) Collapse of a protector species drives secondary endangerment in waterbird communities. Biol Conserv 230:75–81

    Article  Google Scholar 

  • Pöysä H, Holopainen S, Elmberg J, Gunnarsson G, Nummi P, Sjöberg K (2019b) Changes in species richness and composition of boreal waterbird communities: a comparison between two time periods 25 years apart. Sci Rep 9:1725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rannap R, Kaart M M, Kaart T, Kill K, Uuemaa E, Mander Ü, Kasak K (2020) Constructed wetlands as potential breeding sites for amphibians in agricultural landscapes: a case study. Ecol Eng 158:106077

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ et al (2018) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94:849–873

    Article  PubMed  Google Scholar 

  • Ruhí A, Boix D, Sala J, Gascón S, Quintana XD (2009) Spatial and temporal patterns of pioneer macrofauna in recently created ponds, taxonomic and functional approaches. Hydrobiologia 634:137–151

    Article  Google Scholar 

  • Ruhí A, Boix D, Gascón S, Sala J, Quintana XD (2013) Nestedness and successional trajectories of macroinvertebrate assemblages in man-made wetlands. Oecol 171:545–556

    Article  Google Scholar 

  • Simpson JW, Yerkes TJ, Nudds TD, Smith BD (2007) Effects of habitat on mallard duckling survival in the Great Lakes region. J Wildl Manage 71:1885–1891

    Article  Google Scholar 

  • Sjöberg K, Danell K (1983) Changes in the abundance of invertebrates and ducks after flooding of a wetland area in the boreal forest region (N. Sweden). Proc XVI Congr Int Union Game Biol 21–930

  • Sjöberg K, Pöysä H, Elmberg J, Nummi P (2000) Response of mallard ducklings to variation in habitat quality: an experiment of food limitation. Ecology 81:329–335

    Article  Google Scholar 

  • Stewart TW, Downing JA (2008) Macroinvertebrate communities and environmental conditions in recently constructed wetlands. Wetlands 28:141–150

    Article  Google Scholar 

  • Väänänen V-M, Nummi P, Pöysä H, Rask M, Nyberg K (2012) Fish–duck interactions in boreal lakes in Finland as reflected by abundance correlations. Hydrobiologia 697:85–93

    Article  CAS  Google Scholar 

  • Wahlström E, Hallanaro E-L, Manninen S (1996) Vedet ja rannat (In Finnish). In: Suomen ympäristön tulevaisuus. Helsinki: Edita. pp 88–99

  • Wahlroos O, Valkama P, Mäkinen E, Ojala A, Vasander H, Väänänen VM, Halonen A, Lindén L, Nummi P, Ahponen H et al (2015) Urban wetland parks in Finland: improving water quality and creating endangered habitats. Int J Biodivers Sci Ecosyst Serv Manag 11:46–59

    Article  Google Scholar 

  • Walker J, Rotella JJ, Schmidt JH, Loesch CR, Reynolds RE, Lindberg MS, Ringelman JK, Stephens SE (2013) Distribution of duck broods relative to habitat characteristics in the Prairie Pothole Region. J Wildl Manage 77:392–404

    Article  Google Scholar 

  • Whitman WR (1974) The response of macro-invertebrates to experimental marsh management. Ph.D. Thesis, University of Maine at Orono, USA

  • Winfield DK, Winfield IJ (1994) Possible competitive interactions between overwintering tufted duck Aythya fuligula (L.) and fish populations of lough Neagh, Northern Ireland: evidence from diet studies. Hydrobiologia 279:377–386

    Article  Google Scholar 

  • Zhao Q, Arnold TW, Devries JH, Howerter DW, Clark RG, Weegman MD (2019) Land use change increases climatic vulnerability of migratory birds: insights from integrated population modelling. J Anim Ecol 00:1–13

    Google Scholar 

Download references

Acknowledgements

We thank Wenfei Liao for detailed guidance for data arrangement, inspections of duck pair counting, and initial data analyses. We thank Stella Thompson for her diligent proofreading of this paper.

Funding

The fieldwork by Saara Kattainen was funded by the REAH project of Metsähallitus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markéta Čehovská.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: After publication of this paper, the authors found out that the table citations were incorrect.

Appendix

Appendix

Table 9 Summary data for each of the 13 man-made wetlands in Finland during 2008–2011. The table shows mean densities of pairs, broods, and fledged ducks in July–August (numbers per km of shoreline per survey) and the mean invertebrate biomass index per trap for the studied years
Table 10 ZAP model results for three duck species. The random effects of lakes are 1.112 for mallard, 0.972 for teal, and 1.172 goldeneye occurrence models, respectively
Table 11 ZAP model results for teal and goldeneye broods. The random effects of lakes are 0.632 in the occurrence model for goldeneye and 0.302 in the conditional model, respectively. ZAP model results for teal and goldeneye. The random effects of lakes are 1.202 in the occurrence model and 0.512 in the conditional model, respectively
Table 12 ZAP model results for teal density during the post-breeding period (August). The random effects of lakes are 0.682 in the occurrence model and 0.642 in the conditional model, respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čehovská, M., Kattainen, S., Väänänen, VM. et al. Compensating freshwater habitat loss—duck productivity and food resources in man-made wetlands. Eur J Wildl Res 68, 35 (2022). https://doi.org/10.1007/s10344-022-01577-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-022-01577-8

Keywords

Navigation