Skip to main content
Log in

Carriage of antibiotic-resistant bacteria in urban versus rural wild boars

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

The Western European population of wild boar (Sus scrofa) has increased its distribution over the past several decades, and some populations have colonized areas strongly influenced by human activity. Wild boars are known carriers of antibiotic-resistant bacteria acquired from the environment, and urban populations of wild boars may be more exposed than their rural counterparts. In this work, we compared the frequency of antibiotic resistance in indicator bacteria (Escherichia coli, Enterococcus faecalis, Enterococcus faecium) isolated from urban wild boars with that from rural wild boars in NE Spain. We further assessed whether bacterial isolates from the urban wild boars had a higher probability of showing antibiotic resistance when their host was highly associated to urban features. Seventy-two and 100 bacterial isolates from urban and rural habitat, respectively, were screened for antibiotic resistance against a set of antibiotics (13 per bacterial species). We found a significantly higher frequency of E. faecium showing resistance to tetracycline (70.0% vs 36.4%) and high-level resistance to streptomycin (30.0% vs 4.5%) in urban wild boars compared to rural wild boars (p < 0.05). E. faecalis was more frequently resistant to trimethoprim in urban than rural wild boars (33.3% vs 0.0%, p < 0.05). In isolates from urban origin, 55.6% of the likelihood of detecting antibiotic resistance depended only on the bacterial species, being more likely in the enterococci than in E. coli. These results suggest that urban wild boars may be more exposed to certain antibiotic-resistant bacteria or antibiotic resistance genes that they may acquire from the urban environment, although implications are uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvarez-Perez S, Blanco JL, Harmanus C, Kuijper EJ, Garcia ME (2017) Prevalence and characteristics of Clostridium perfringens and Clostridium difficile in dogs and cats attended in diverse veterinary clinics from the Madrid region. Anaerobe 48:47–55. https://doi.org/10.1016/j.anaerobe.2017.06.023

    Article  PubMed  Google Scholar 

  • Apollonio M, Andersen R (2010) European ungulates and their management in the 21st century. Cambridge University Press, Cambridge

    Google Scholar 

  • Arnold KE, Williams NJ, Bennett M (2017) “Disperse abroad in the land”: the role of wildlife in the dissemination of antimicrobial resistance. Biol Lett 12:20160137. https://doi.org/10.1098/rsbl.2016.0137

    Article  CAS  Google Scholar 

  • Atterby C, Ramey AM, Hall GG, Järhult J, Börjesson S, Bonnedahl J (2016) Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments. Infect Ecol Epidemiol 19:32334. https://doi.org/10.3402/iee.v6.32334

    Article  Google Scholar 

  • Bateman PW, Fleming PA (2012) Big city life: carnivores in urban environments. J Zool 287:1–23. https://doi.org/10.1111/j.1469-7998.2011.00887.x

    Article  Google Scholar 

  • Bieber C, Ruf T (2005) Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J Appl Ecol 42:1203–1213. https://doi.org/10.1111/j.1365-2664.2005.01094.x

    Article  Google Scholar 

  • Bonnedahl J, Drobni M, Gauthier-Clerc M, Hernandez J, Granholm S, Kayser Y, Melhu A, Kahlmeter G, Waldenström J, Johansson A, Olsen B (2009) Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France. PLoS One 4:e5958. https://doi.org/10.1371/journal.pone.0005958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference. In: A practical information-theoretic approach. Springer, New York

    Chapter  Google Scholar 

  • Cahill S, Llimona F, Gràcia J (2003) spacing and nocturnal activity of wild boar Sus scrofa in a Mediterranean metropolitan park. Wildlife Biol 9:3–13. doi:.https://doi.org/10.2981/wlb.2003.058

  • Cahill S, Llimona F, Cabañeros L, Casas E, Massei GCF (2010) Wild boar habituation to human and suburban landscapes: local perspectives on an increasingly global phenomenon with complex management implications. In: 8th international symposium on wild boar and other suids. York, United Kingdom

  • Cahill S, Llimona F, Cabañeros L, Calomardo F (2012) Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim Biodivers Conserv 35(2):221–233

    Google Scholar 

  • Castillo-Contreras R, Carvalho J, Serrano E, Mentaberre G, Fernández-Aguilar X, Colom A, González-Crespo C, Lavín S, López-Olvera JR (2018) Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci Total Environ 615:282–288. https://doi.org/10.1016/j.scitotenv.2017.09.277

    Article  CAS  PubMed  Google Scholar 

  • De Jong A, Thomas V, Simjee S, Godinho K, Schiessl B, Klein U, Butty P, Vallé M, Marion H, Shryock TR (2012) Pan-European monitoring of susceptibility to human-use antimicrobial agents in enteric bacteria isolated from healthy food-producing animals. J Antimicrob Chemother 67:638–665. https://doi.org/10.1093/jac/dkr539

    Article  CAS  PubMed  Google Scholar 

  • De Jong A, Simjee S, El Garch F, Moyaert H, Rose M, Youala M, Dry M (2018) Antimicrobial susceptibility of enterococci recovered from healthy cattle, pigs and chickens in nine EU countries (EASSA Study) to critically important antibiotics. Vet Microbiol 216:168–175. https://doi.org/10.1016/j.vetmic.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192. https://doi.org/10.2307/177409

    Article  Google Scholar 

  • Ditchkoff SS, Saalfeld ST, Gibson CJ (2006) Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban Ecosyst 9:5–12. https://doi.org/10.1007/s11252-006-3262-3

    Article  Google Scholar 

  • Dobiasova H, Dolejska M (2016) Prevalence and diversity of IncX plasmids carrying fluoroquinolone and beta-lactam resistance genes in Escherichia coli originating from diverse sources and geographical areas. J Antimicrob Chemoth 71:2118–2124. https://doi.org/10.1093/jac/dkw144

    Article  Google Scholar 

  • Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:1434

    CAS  PubMed  PubMed Central  Google Scholar 

  • EUCAST (European Committee on Antimicrobial Susceptibility Testing). Data from the EUCAST MIC distribution website, last accessed 06/2012. http://www.eucast.org

  • European Food Safety Authority (2008) Report from the Task Force on Zoonoses Data Collection including guidance for harmonized monitoring and reporting of antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. from food animals. EFSA J 141:1–44. https://doi.org/10.2903/j.efsa.2008.141r

    Article  Google Scholar 

  • European Food Safety Authority (2012) Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in Salmonella, Campylobacter and indicator Escherichia coli and Enterococcus spp. bacteria transmitted through food. EFSA J 10(2742). https://doi.org/10.2903/j.efsa.2012.2742

  • European Food Safety Authority and European Centre for Disease Prevention and Control (2012) Summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. EFSA J 10:2598. https://doi.org/10.2903/j.efsa.2012.2598

    Article  CAS  Google Scholar 

  • European Food Safety Authority and European Centre for Disease Prevention and Control (2016) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2014. EFSA J 14(4380). https://doi.org/10.2903/j.efsa.2016.4380

  • Fessler AT, Calvo N, Gutierrez N, Munoz Bellido JL, Fajardo M, Garduno E, Monecke S, Ehricht R, Kadlec K, Schwarz S (2013) Cfr-mediated linezolid resistance in methicillin-resistant Staphylococcus aureus and Staphylococcus haemolyticus associated with clinical infections in humans: two case reports. J Antimicrob Chemother 69(1):268–270

    Article  PubMed  Google Scholar 

  • Furness LE, Campbell A, Zhang LH, Gaze WH, McDonald RA (2017) Wild small mammals as sentinels for the environmental transmission of antimicrobial resistance. Environ Res 154:28–34. https://doi.org/10.1016/j.envres.2016.12.014

    Article  CAS  PubMed  Google Scholar 

  • Harveson PM, Lopez RR, Collier BA, Silvy NJ (2007) Impacts of urbanization on Florida Key deer behavior and population dynamics. Biol Conserv 134:321–331. https://doi.org/10.1016/j.biocon.2006.07.022

    Article  Google Scholar 

  • Heininger A, Bider M, Schmidt S, Unertl K, Botzenhart K, Doring G (1999) PCR and blood culture for detection of Escherichia coli bacteremia in rats. J Clin Microbiol 37:2479–2482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández J, González-Acuña D (2016) Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol 6:32112

    Article  PubMed  Google Scholar 

  • Hölzel CS, Harms KS, Schwaiger K, Bauer J (2010) Resistance to linezolid in a porcine Clostridium perfringens strain carrying a mutation in the rplD gene encoding the ribosomal protein L4. Antimicrob Agents Ch 54:1351–1353. https://doi.org/10.1128/AAC.01208-09

    Article  CAS  Google Scholar 

  • Idescat (2013) Cens de població i habitatges 2011. Available at https://www.idescat.cat

  • Jardine CM, Janecko N, Allan M, Boerlin P, Chalmers G, Kozak G, McEwen S, Reid-Smith RJ (2012) Antimicrobial resistance in Escherichia coli isolates from raccoons (Procyon lotor) in southern Ontario, Canada. Appl Environ Microbiol 78:3873–3879. https://doi.org/10.1128/AEM.00705-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Valverde A (2012) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob Ecol Biogeogr 21:498–507. https://doi.org/10.1111/j.1466-8238.2011.00683.x

    Article  Google Scholar 

  • Jobbins SE, Alexander KA (2015) From whence they came—antibiotic-resistant Escherichia coli in African wildlife. J Wildlife Dis 51:811–820. https://doi.org/10.7589/2014-11-257

    Article  CAS  PubMed  Google Scholar 

  • Literak I, Dolejska M, Radimersky T, Klimes J, Friedman M, Aarestrup FM, Hasman H, Cizek A (2010) Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. J Appl Microbiol 108:1702–1711. https://doi.org/10.1111/j.1365-2672.2009.04572.x

    Article  CAS  PubMed  Google Scholar 

  • Llimona F, Cahill S, Tenés A, Camps D, Bonet-Arbolí V, Cabañeros L (2007) El estudio de los mamíferos en relación a la gestión de áreas periurbanas. El caso de la región metropolitana de Barcelona Galemys 19:215–234

    Google Scholar 

  • Lowry H, Lill A, Wong BBM (2013) Behavioural responses of wildlife to urban environments. Biol Rev 88:537–549. https://doi.org/10.1111/brv.12012

    Article  PubMed  Google Scholar 

  • Lozano C, Gonzalez-Barrio D, Camacho MC, Lima-Barbero JF, De la Puente J, Hofle U, Torres C (2016) Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain. Microb Ecol 72:813–820. https://doi.org/10.1007/s00248-015-0648-x

    Article  CAS  PubMed  Google Scholar 

  • Luniak M (2004) Synurbization - the adaptation of animal wildlife to urban development. In: Shaw WW, Harris LK, VanDruff L (Eds). Proceedings of the 4th international symposium on urban wildlife conservation, 1999, Tucson, Arizona, USA

  • Massei G, Kindberg J, Licoppe A, Gačić D, Šprem N, Kamler J, Baubet E, Hohmann U, Monaco A, Ozoliņš J, Cellina S, Podgórski T, Fonseca C, Markov N, Pokorny B, Rosell C, Náhlik A (2015) Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci 71:492–500. https://doi.org/10.1002/ps.3965

    Article  CAS  PubMed  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. https://doi.org/10.1016/j.biocon.2005.09.005

    Article  Google Scholar 

  • Meka VG, Gold HS (2004) Antimicrobial resistance to linezolid. Clin Infect Dis 39(7):1010–1015

    Article  CAS  PubMed  Google Scholar 

  • Mentaberre G, Romero B, de Juan L, Navarro-Gonzalez N, Velarde R, Mateos A, Marco I, Olivé-Boix X, Domínguez L, Lavín S, Serrano E (2014) Long-term monitoring of wild boar harvesting and cattle removal for bovine tuberculosis control in free ranging populations. PLoS One 9:e88824. https://doi.org/10.1371/journal.pone.0088824

    Article  PubMed  PubMed Central  Google Scholar 

  • Morelle K, Podgórski T, Prévot C, Keuling O, Lehaire F, Lejeune P (2015) Towards understanding wild boar Sus scrofa movement: a synthetic movement ecology approach. Mammal Rev 45(1):15–29. https://doi.org/10.1111/mam.12028

    Article  Google Scholar 

  • Navarro-Gonzalez N, Mentaberre G, Porrero CM, Serrano E, Mateos A, López-Martín JM, Lavín S, Domínguez L (2012) Effect of cattle on Salmonella carriage, diversity and antimicrobial resistance in free-ranging wild boar (Sus scrofa) in northeastern Spain. PLoS One 7:e51614. https://doi.org/10.1371/journal.pone.0051614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Gonzalez N, Porrero MC, Mentaberre G, Serrano E, Mateos A, Dominguez L, Lavin S (2013a) Antimicrobial resistance in Indicator Escherichia coli isolates from free-ranging livestock and sympatric wild ungulates in a natural environment (northeastern Spain). Appl Environ Microbiol 79:6184–6186. https://doi.org/10.1128/AEM.01745-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Gonzalez N, Casas-Díaz E, Porrero CM, Mateos A, Domínguez L, Lavín S, Serrano E (2013b) Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boars in Barcelona, Spain. Vet Microbiol 167:686–689. https://doi.org/10.1016/j.vetmic.2013.07.037

    Article  PubMed  Google Scholar 

  • Papich MG (2016) Linezolid. In: Papich MG (ed) Saunders handbook of veterinary drugs (4th edition). W.B. Saunders, St. Louis, pp 451–452

    Chapter  Google Scholar 

  • Poeta P, Costa D, Igrejas G, Rodrigues J, Torres C (2007) Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). Vet Microbiol 125:368–374

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Sacristán C, Esperon F, Herrera-Leon S, Iglesias I, Neves E, Nogal V, Munoz MJ, de la Torre A (2014) Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain. Avian Pathol 43:172–175. https://doi.org/10.1080/03079457.2014.897683

    Article  CAS  PubMed  Google Scholar 

  • Sáez-Royuela C, Tellería JL (1986) The increased population of the wild boar (Sus scrofa L.) in Europe. Mammal Rev 16(2):97–101. https://doi.org/10.1111/j.1365-2907.1986.tb00027.x

    Article  Google Scholar 

  • Skurnik D, Ruimy R, Andremont A, Amorin C, Rouquet P, Picard B, Denamur E (2006) Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. J Antimicrob Chemoth 57:1215–1219. https://doi.org/10.1093/jac/dkl122

    Article  CAS  Google Scholar 

  • Stillfried M, Gras P, Börner K, Göritz F, Painer J, Röllig K, Wenzler M, Hofer H, Ortmann S, Kramer-Schadt S (2017) Secrets of success in a landscape of fear: urban wild boar adjust risk perception and tolerate disturbance. Front Ecol Evol 5(157). https://doi.org/10.3389/fevo.2017.00157

  • Therneau T, Atkinson B, Ripley B (2013) Package “rpart”: recursive partitioning and regression trees. R package version 4:1–10 https://CRAN.R-project.org/package=rpart

    Google Scholar 

  • Vittecoq M, Godreuil S, Prugnolle F, Durand P, Brazier L, Renaud N, Arnal A, Aberkane S, Jean-Pierre H, Gauthier-Leclerc M, Thomas F, Renaud F (2016) Antimicrobial resistance in wildlife. J Appl Ecol 53:519–529. https://doi.org/10.1111/1365-2664.12596

    Article  Google Scholar 

  • Wasyl D, Zajac M, Lalak A, Skarzynska M, Samcik I, Kwit R, Jablonski A, Bocian L, Wozniakowski G, Hoszowski A, Szulowsk K (2017) Antimicrobial resistance in Escherichia coli isolated from wild animals in Poland. Microb Drug Resist 24:807–815. https://doi.org/10.1089/mdr.2017.0148

    Article  CAS  PubMed  Google Scholar 

  • Wheeler E, Hong P-Y, Bedon LC, Mackie RI (2012) Carriage of antibiotic-resistant enteric bacteria varies among sites in Galápagos reptiles. J Wildlife Dis 48:56–67. https://doi.org/10.7589/0090-3558-48.1.56

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Collserola Natural Park staff for their help in obtaining the samples and information necessary for this work. E. Serrano (SFRH/BPD/96637/2013) and R. T. Torres (SFRH/BPD/112482/2015) were supported by a post-doctoral grant from Fundação para a Ciência e a Tecnologia, Portugal. R. Castillo-Contreras was supported by a PhD grant (2016FI_B 00425) co-financed by Generalitat de Catalunya (Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement) and European Social Fund (ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Navarro-Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro-Gonzalez, N., Castillo-Contreras, R., Casas-Díaz, E. et al. Carriage of antibiotic-resistant bacteria in urban versus rural wild boars. Eur J Wildl Res 64, 60 (2018). https://doi.org/10.1007/s10344-018-1221-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-018-1221-y

Keywords

Navigation