Skip to main content

Advertisement

Log in

Gene flow and genetic structure of the puma and jaguar in Mexico

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Gene flow among populations and subpopulations homogenizes allele frequencies. This mechanism is strongly influenced by species dispersal ability, frequently correlating genetic variation with distance among individuals, which is also known as an isolation-by-distance pattern. Species with high dispersal abilities are expected to show a limited isolation-by-distance pattern compared to those with reduced dispersal. Here, we use non-invasive genetic sampling of faeces to evaluate how isolation-by-distance is differentially structured in jaguar and puma populations in Mexico. We have optimized and validated a reliable and standardized non-invasive genetic sampling protocol to monitor pumas based on 12 microsatellite markers, as well as applied a previously published and consistent protocol for jaguars. We found that jaguars and pumas were not uniform and panmictic populations. Spatial trends in allele frequencies for both species generated clinal patterns. However, pumas showed a stronger isolation-by-distance pattern than jaguars, which was expected since pumas seem to have a lower dispersal ability than jaguars. The genetic structures of both species differed at the level of subpopulations. These results reinforce the differences in intensity of isolation-by-distance between two generalist species with high dispersal ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreasen AM, Stewart KM, Longland WS et al (2012) Identification of source-sink dynamics in mountain lions of the Great Basin. Mol Ecol 21:5689–5701

    Article  PubMed  Google Scholar 

  • Balkenhol N, Gugerli F, Cushman S a et al (2009) Identifying future research needs in landscape genetics: where to from here? Landsc Ecol 24:455–463

    Article  Google Scholar 

  • Bhagavatula J, Singh L (2006) Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet 7:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Bontemps S, Defourny P, Van Bogaert E et al (2011) GLOBCOVER 2009., UCLouvain & ESA Team

    Google Scholar 

  • Boom R, Sol CJ, Salimans MM et al (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkman TJ, Hundertmark KJ (2009) Sex identification of northern ungulates using low quality and quantity DNA. Conserv Genet 10:1189–1193

    Article  CAS  Google Scholar 

  • Cavalcanti SMC, Gese EM (2009) Spatial ecology and social interactions of jaguars (Panthera onca) in the Southern Pantanal, Brazil. J Mammal 90:935–945

    Article  Google Scholar 

  • Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  • Cullen L Jr (2006) Jaguars as landscape detectives for the conservation of Atlantic Forests in Brazil. University of Kenty, UK

    Google Scholar 

  • Cushman S a, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–99

    Article  PubMed  Google Scholar 

  • Davison A, Birks JDS, Brookes RC et al (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool 257:141–143

    Article  Google Scholar 

  • De Angelo C, Paviolo A, Di Bitetti M et al (2011) Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca) in the Upper Paraná Atlantic Forest. Divers Distrib 17:422–436

    Article  Google Scholar 

  • Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A (2010) Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36:403–412

    Article  Google Scholar 

  • Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Dutta T, Sharma S, Maldonado JE et al (2013) Fine-scale population genetic structure in a wide-ranging carnivore, the leopard (Panthera pardus fusca) in central India. Divers Distrib 19:760–771

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–20

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farrell LE, Roman J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9:1583–1590

    Article  CAS  PubMed  Google Scholar 

  • Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Am Nat 159:40–56

    Article  PubMed  Google Scholar 

  • François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174:805–16

    Article  PubMed  PubMed Central  Google Scholar 

  • François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784

    Article  PubMed  Google Scholar 

  • Frantz a C, Pope LC, Carpenter PJ et al (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12:1649–1661

    Article  CAS  PubMed  Google Scholar 

  • Frantz AC, Cellina S, Krier A et al (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505

    Article  Google Scholar 

  • Galetti M, Eizirik E, Beisiegel B, et al (2013) Atlantic Rainforest’s jaguars in decline. Science (80- ) 342:930.

  • Goudet J (2002) FSTAT: a computer program to calculate F-statistics.

  • Haag T, Santos AS, Sana DA et al (2010) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol Ecol 19:4906–4921

    Article  CAS  PubMed  Google Scholar 

  • Hardy O, Vekemans X (2013) SPAGeDi.

  • Höss M, Svante P (1993) DNA extraction form Pleistocene bones by a silica-based purification method. Nucleic Acids Res 21:3913–3914

    Article  PubMed  PubMed Central  Google Scholar 

  • Hostetler J a, Onorato DP, Jansen D, Oli MK (2012) A cat’s tale: the impact of genetic restoration on Florida panther population dynamics and persistence. J Anim Ecol 82:608–620

    Article  PubMed  Google Scholar 

  • IUCN (2016) The IUCN red list of threatened species. http://www.iucnredlist.org/. Accessed 2 May 2016

  • Jakobsson M, Rosenberg N a (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–1. doi:10.1093/bioinformatics/btr521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Dufour A-B, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity (Edinb) 101:92–103

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) Hp-Rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kurushima JD, Collins JA, Well JA, Ernest HB (2006) Development of 21 microsatellite loci for puma (Puma concolor) ecology and forensics. Mol Ecol Notes 6:1260–1262

    Article  CAS  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Loxterman JL (2011) Fine scale population genetic structure of pumas in the Intermountain West. Conserv Genet 12:1049–1059

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Menotti-Raymond M, David VA, Lyons LA et al (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23

    Article  CAS  PubMed  Google Scholar 

  • Miotto RA, Cervini M, Figueiredo MG et al (2011) Genetic diversity and population structure of pumas (Puma concolor) in southeastern Brazil: implications for conservation in a human-dominated landscape. Conserv Genet 12:1447–1455

    Article  Google Scholar 

  • Miquel C, Bellemain E, Poillot C et al (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988

    Article  Google Scholar 

  • Mondol S, Navya R, Athreya V et al (2009) A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes. BMC Genet 10:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  CAS  PubMed  Google Scholar 

  • Moran PAP (1948) The interpretation of statistical maps. J R Stat Soc Ser B 10:243–251

    Google Scholar 

  • Ovaskainen O, Hanski I (2003) How much does an individual habitat fragment contribute to metapopulation dynamics and persistence? Theor Popul Biol 64:481–495

    Article  PubMed  Google Scholar 

  • Palomares F, Godoy J a, Piriz A et al (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182

    Article  CAS  PubMed  Google Scholar 

  • Palomares F, Roques S, Chávez C et al (2012) High proportion of male faeces in jaguar populations. PLoS One 7:e52923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez I, Geffen E, Mokady O (2006) Critically endangered Arabian leopards Panthera pardus nimr in Israel: estimating population parameters using molecular scatology. Oryx 40:295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing.

  • Ramón-Laca A, Soriano L, Gleeson D, Godoy JA (2015) A simple and effective method for obtaining mammal DNA from faeces. Wildlife Biol 21:195–203

    Article  Google Scholar 

  • Reed DH (2004) Extinction risk in fragmented habitats. Anim Conserv 7:181–191

    Article  Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution (N Y) 43:223–225

    Google Scholar 

  • Roques S, Adrados B, Chavez C et al (2011) Identification of Neotropical felid faeces using RCP-PCR. Mol Ecol Resour 11:171–5

    Article  CAS  PubMed  Google Scholar 

  • Roques S, Furtado M, Jácomo ATA et al (2014) Monitoring jaguar populations (Panthera onca) with non-invasive genetics: a pilot study in Brazilian ecosystems. Oryx 48:361–369

    Article  Google Scholar 

  • Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution (N Y) 68:1–15

    CAS  Google Scholar 

  • Sharma S, Dutta T, Maldonado E et al (2013) Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc R Soc B 280:20131506

    Article  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B 64:583–639

    Article  Google Scholar 

  • Thioulouse J, Chessel D, Champely S (1995) Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environ Ecol Stat 2:1–14

    Article  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Hu Y, Zhu L et al (2012) Black and white and read all over: the past, present and future of giant panda genetics. Mol Ecol 21:5660–5674

    Article  PubMed  Google Scholar 

  • Whitmee S, Orme CDL (2013) Predicting dispersal distance in mammals: a trait-based approach. J Anim Ecol 82:211–21

    Article  PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zanin M, Palomares F, Brito D (2015) The jaguar’s patches: viability of jaguar populations in fragmented landscapes. J Nat Conserv 23:90–97

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundación BBVA (project BIOCON 05–100/06) and the Spanish Ministry of Science and Innovation (project CGL2010-16902) for the funds of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Zanin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Selection of microsatellite markers for puma individual identification (DOCX 15 kb)

Table S1

Measures of efficiency and diversity of 18 microsatellite loci tested to genotype pumas, with primer sequences, annealing temperature, PCR amplification success (%), error rates (allelic dropout and false alleles), number of alleles, allelic range (bps), polymorphism (PIC), expected and observed heterozygosity (H EXP and H OBS), probabilities of identity for siblings (PIDSIB) and for unrelated individuals (PID) (DOCX 16 kb)

Fig. S1

Mismatch probability distributions of the pumas and jaguars from both populations identified in our study. Dashed lines are mismatch probability distributions of full siblings, while unbroken lines are unrelated individuals. (TIF 23549 kb)

Table S2

Measures of diversity for 12 microsatellite loci in the five puma demes identified in the study. Sample size (N), allelic richness (A), rarefaction of allelic richness (AR), private alleles (PA), observed (H o) and expected (H e) heterozygosities, and inbreeding coefficient (F IS). (DOCX 16 kb)

Table S3

Measures of diversity at 11 microsatellite loci in the three jaguar demes of the study. Sample size (N), allelic richness (A), rarefaction of allelic richness (AR), private alleles (PA), observed (H o) and expected (H e) heterozygosities, and inbreeding coefficient (F IS). (DOCX 15 kb)

Fig. S2

Selection of principal components of the Spatial Principal Components Analysis (sPCA) for puma (left) and jaguar (right). Upper graphs (a and b) are eigenvalues expressing the explanatory power of the principal components. Lower graphs (c and d) display the genetic variance and spatial autocorrelation (measured by Moran’s I Index) contained in each principal component. For both species, the first principal component is the only one that captures spatial structure and substantial genetic variation, which corresponds to the outlier point in both graphs c and d. (TIF 39009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanin, M., Adrados, B., González, N. et al. Gene flow and genetic structure of the puma and jaguar in Mexico. Eur J Wildl Res 62, 461–469 (2016). https://doi.org/10.1007/s10344-016-1019-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-016-1019-8

Keywords

Navigation