Skip to main content
Log in

Mycobacteria species in wild mammals of the Pantanal of central South America

  • Short Communication
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Bovine tuberculosis is a chronic disease of economic importance in livestock, but may also infect wild animals and occasionally humans. Its principal infective agent is Mycobacterium bovis. The present study was undertaken to examine the possible involvement of wildlife in the M. bovis life cycle in the Pantanal and to assess their potential role as a wild animal reservoir for this disease. DNA samples were obtained from 14 wild animals, namely 4 pampas deer (Ozotoceros bezoarticus), 9 feral pigs (Sus scrofa), and 1 coati (Nasua nasua). A region of the hsp65 gene, present in all mycobacteria, was amplified and seven species of Mycobacterium were identified. Mycobacterium avium was present in 50 % of the samples and in all three animal species. Unsurprisingly, several non-tuberculosis mycobacteria species, such as Mycobacterium saskatchewanense, Mycobacterium parafinicum, and Mycobacterium parascrofulaceum were also detected. One sample from a deer exhibited high sequence similarity to M. bovis reference strains, which was confirmed through analysis using a 24-locus MIRU-VNTR genotyping. The results highlight the need for targeted M. bovis surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alvarez J, Bezos J, Juan L, Vordermeier M, Rodriguez S, Fernandez-de-Mera IG, Mateos A, Domínguez L (2012) Diagnosis of tuberculosis in camelids: old problems, current solutions and future challenges. Transbound Emerg Dis 59:1–10

    Article  CAS  PubMed  Google Scholar 

  • Biet F, Boschiroli ML, Thorel MF, Guilloteau LA (2005) Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (mac). Vet Res 36:411–436

    Article  PubMed  Google Scholar 

  • Boadella M, Lyashchenko K, Greenwald R, Esfandiari J, Jaroso R, Carta T, Garrido JM, Vicente J, de la Fuente J, Gortázar C (2011) Serologic tests for detecting antibodies against Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis in Eurasian wild boar (Sus scrofa). J Vet Diagn Investig 23:77–83

    Article  Google Scholar 

  • Castillo-Rodal AI, Mazari-Hiriart M, Lloret-Sánchez LT, Sachman-Ruiz B, Vinuesa P, López-Vidal Y (2012) Potentially pathogenic nontuberculous mycobacteria found in aquatic systems. Analysis from a reclaimed water and water distribution system in Mexico City. Eur J Clin Microbiol Infect Dis 31:683–694

    Article  CAS  PubMed  Google Scholar 

  • Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356:991–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corner LA, Gormley E (2012) Mycobacterial infections in multiple species: implications for diagnosis and control. Vet J 191:141–142

    Article  PubMed  Google Scholar 

  • Cousins DV, Florisson N (2005) A review of tests available for use in the diagnosis of tuberculosis in non-bovine species. Rev Sci Tech 24:1039–1059

    CAS  PubMed  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • Desbiez ALJ, Borges PAL (2010) Density, habitat selection and observations of south american coati nasua in the central region of the Brazilian Pantanal wetland. Small Carniv Conserv 42:14–18

    Google Scholar 

  • Fischer O, Mátlová L, Dvorská L, Svástová P, Bartl J, Melichárek I, Weston RT, Pavlík I (2001) Diptera as vectors of mycobacterial infections in cattle and pigs. Med Vet Entomol 15:208–211

    Article  CAS  PubMed  Google Scholar 

  • Fischer OA, Matlova L, Bartl J, Dvorska L, Svastova P, du Maine R, Melicharek I, Bartos M, Pavlik I (2003) Earthworms (Oligochaeta, Lumbricidae) and mycobacteria. Vet Microbiol 91:325–338

    Article  CAS  PubMed  Google Scholar 

  • Frothingham R, Meeker-O′Connell WA (1998) Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144(Pt 5):1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Chen JH, Hu ST, Chiou CS, Huang WC, Hsu JY, Lu JJ, Shen GH (2012) Combined rpob duplex pcr and hsp65 pcr restriction fragment length polymorphism with capillary electrophoresis as an effective algorithm for identification of mycobacterial species from clinical isolates. BMC Microbiol 12:137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirschner RA, Parker BC, Falkinham JO (1992) Epidemiology of infection by nontuberculous mycobacteria. Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum in acid, brown-water swamps of the southeastern United States and their association with environmental variables. Am Rev Respir Dis 145:271–275

    Article  PubMed  Google Scholar 

  • Kremer K, Au BK, Yip PC, Skuce R, Supply P, Kam KM, van Soolingen D (2005) Use of variable-number tandem-repeat typing to differentiate Mycobacterium tuberculosis Beijing family isolates from Hong Kong and comparison with is 6110 restriction fragment length polymorphism typing and spoligotyping. J Clin Microbiol 43:314–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michel AL, Müller B, van Helden PD (2010) Mycobacterium bovis at the animal-human interface: a problem, or not? Vet Microbiol 140:371–381

    Article  PubMed  Google Scholar 

  • Palmer MV (2007) Tuberculosis: a reemerging disease at the interface of domestic animals and wildlife. Curr Top Microbiol Immunol 315:195–215

    CAS  PubMed  Google Scholar 

  • Rodrigues FHG (1996) Historia natural e biologia comportamental do veado campeiro (Ozotoceros bezoarticus) em cerrado do Brasil central. Universidade Estadual de Campinas, Campinas, SP

    Google Scholar 

  • Schöning JM, Cerny N, Prohaska S, Wittenbrink MM, Smith NH, Bloemberg G, Pewsner M, Schiller I, Origgi FC, Ryser-Degiorgis MP (2013) Surveillance of bovine tuberculosis and risk estimation of a future reservoir formation in wildlife in switzerland and liechtenstein. PLoS One 8:e54253

    Article  PubMed Central  PubMed  Google Scholar 

  • Shinnick T (1987) The 65-kilodalton antigen of mycobacterium-tuberculosis. J Bacteriol 169:1080–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Supply P (2005) Multilocus variable number tandem repeat genotype of mycobacterium tuberculosis, p. 73. Institut de Biologie/Institut Pasteur de Lisle

  • Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Telenti A, Marchesi F, Balz M, Bally F, Bottger E, Bodmer T (1993) Rapid identification of mycobacteria to the species level by polymerase chain-reaction and restriction enzyme analysis. J Clin Microbiol 31:175–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomás WM, McShea W, Miranda GHBd, Moreira JR, Mourao G, Borges PAL (2001) A survey of a pampa deer, Ozotoceros bezoarticus leucogaster (Arctiodactyla, Cervidae), population in the Pantanal wetland, brazil, using distance sampling technique. Anim Biodivers Conserv 101–106

  • Tortoli E (2012) Phylogeny of the genus mycobacterium: many doubts, few certainties. Infect Genet Evol 12:827–831

    Article  PubMed  Google Scholar 

  • von Reyn CF, Arbeit RD, Horsburgh CR, Ristola MA, Waddell RD, Tvaroha SM, Samore M, Hirschhorn LR, Lumio J, Lein AD, Grove MR, Tosteson AN (2002) Sources of disseminated Mycobacterium avium infection in aids. J Infect 44:166–170

    Article  Google Scholar 

  • Whittington RJ, Lloyd JB, Reddacliff LA (2001) Recovery of Mycobacterium avium subsp. Paratuberculosis from nematode larvae cultured from the faeces of sheep with Johne’s disease. Vet Microbiol 81:273–279

    Article  CAS  PubMed  Google Scholar 

  • Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB, Reddacliff LA (2004) Survival and dormancy of Mycobacterium avium subsp. Paratuberculosis in the environment. Appl Environ Microbiol 70:2989–3004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letícia Alves Gomes Albertti.

Additional information

Communicated by C. Gortázar

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

ESM 1

(DOCX 21 kb)

Fig. 1

(GIF 110 kb)

High resolution image (EPS 1161 kb)

Fig. 2

(GIF 96 kb)

High resolution image (EPS 1760 kb)

Fig. 3

(GIF 68 kb)

High resolution image (EPS 1297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albertti, L.A.G., Souza-Filho, A.F., Fonseca-Júnior, A.A. et al. Mycobacteria species in wild mammals of the Pantanal of central South America. Eur J Wildl Res 61, 163–166 (2015). https://doi.org/10.1007/s10344-014-0866-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-014-0866-4

Keywords

Navigation