Skip to main content

Advertisement

Log in

Temporal kinetics of fluoride accumulation: from fetal to adult deer

  • Short Communication
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

In June 2011, a volcano deposited about 100 million tons of tephra over parts of Chile and over 36 million ha of Argentina. Initially, fluoride was considered irrelevant; however, recently wild deer exhibited strong fluorosis, with fluoride level increasing 38-fold among severely affected deer. Whereas mothers averaged 2,151 ppm, their late-term fetuses had only 19.8 ppm, indicating a barrier to fluoride transport in utero. Levels among four age classes increased significantly, at a rate of about 1,000 ppm/year. The temporal kinetics of accumulation suggests that sources of available fluoride are highly effective. Thus, compared to prior background levels (63 ppm in adults) and to fetuses starting at about 20 ppm, 1-year-old calves averaged 1,035 ppm (maximum 1,830 ppm), 2-year olds averaged 2,151 ppm (maximum 2,513 ppm), and older deer averaged 2,806 ppm (maximum 5,175 ppm). As osteofluorosis occurs in deer with >4,000 ppm, accumulation of 1,000 ppm/year would result in adults reaching levels causing osteopathology in 1–2 years. Importantly, impacts may be further exacerbated by regional iodine and selenium deficiencies. Iodine deficiency may increase incidences of dental fluorosis and severity of damages, while selenium deficiency impacts iodine metabolism. Fluorosis will affect population dynamics, morbidity, predation susceptibility, and other ecosystem components like scavenger and plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Chongwan H, Daijei H, Tingzhong Z, Cundong W (1986) Light microscopic and scanning electron microscopic observations on human fetal bones from an endemic fluorosis area. Fluoride 19:18–22

    CAS  Google Scholar 

  • Cronin SJ, Manoharan V, Hedley MJ, Loganathan P (2000) Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed pasture systems in New Zealand. NZ J Agr Res 43:295–321

    Article  CAS  Google Scholar 

  • DGA (Dirección General de Aguas) (2012) Informa resultados del programa de monitoreo de emergencia por erupción volcánica en Cordón Caulle. Minuta 7, Ministerio de Obras Publicas, Santiago, Chile. 56 pp. http://documentos.dga.cl/CQA5306.pdf Accessed 1 Nov 2012

  • Flueck WT (2002) Offspring sex ratio in relation to body reserves in red deer (Cervus elaphus). Euro J Wildl Res 48:S99–S106

    Article  Google Scholar 

  • Flueck WT (2013) Effects of fluoride intoxication on teeth of livestock due to a recent volcanic eruption in Patagonia, Argentina. Onl J Vet Res 17:167–176

    Google Scholar 

  • Flueck WT, Smith-Flueck JM (2008) Age-independent osteopathology in skeletons of a South American cervid, the Patagonian huemul (Hippocamelus bisulcus). J Wildl Dis 44:636–648

    Article  PubMed  Google Scholar 

  • Flueck WT, Smith-Flueck JM (2011) Recent advances in the nutritional ecology of the Patagonian huemul: implications for recovery. Anim Prod Sci 51:311–326

    Article  CAS  Google Scholar 

  • Flueck WT, Smith-Flueck JM (2013) Severe dental fluorosis in juvenile deer linked to a recent volcanic eruption in Patagonia. J Wildl Dis 49:355–366

    Article  PubMed  Google Scholar 

  • Garrott RA, Eberhardt LL, Otton JK, White PJ, Chaffee MA (2002) A geochemical trophic cascade in Yellowstone’s geothermal environments. Ecosystems 5:659–666

    Article  CAS  Google Scholar 

  • Gurumurthy Sastry M, Mohanty S, Rao P (2010) Role of placenta to combat fluorosis (in fetus) in endemic fluorosis area. Nat J Integr Res Med 1:16–19

    Google Scholar 

  • Hufner R, Osuna CM (2011) Caracterización de muestras de cenizas volcánicas volcán Puyehue. Doc. C289-CCGG-9IPCA-001-A, INVAP S.E., Bariloche, Argentina. 4 pp. http://organismos.chubut.gov.ar/ambiente/files/2011/06/Informe-Cenizas-Puyehue1.-INVAP.pdf Accessed 1 Nov 2012

  • Kay CE, Gordon CC, Tourangeau PC (1975) Industrial fluorosis in wild mule and whitetail deer from Western Montana. Fluoride 8:182–191

    CAS  Google Scholar 

  • Kay E, Tourangeau PC, Gordon CC (1976) Populational variation of fluoride parameters in wild ungulates from the western United States. Fluoride 9:73–90

    CAS  Google Scholar 

  • Kierdorf U, Kierdorf H (2000) The fluoride content of antlers as an indicator of fluoride exposure in red deer (Cervus elaphus): a historical biomonitoring study. Arch Environ Contam Toxicol 38:121–127

    Article  PubMed  CAS  Google Scholar 

  • Kierdorf U, Kierdorf H, Erdelen M, Machoy Z (1995) Mandibular bone fluoride accumulation in wild red deer (Cervus elaphus L.) of known age. Comp Biochem Physiol Part A 110:299–302

    Article  CAS  Google Scholar 

  • Kierdorf H, Kierdorf U, Sedlacek F, Erdelen M (1996a) Mandibular bone fluoride levels and occurrence of fluoride induced dental lesions in populations of wild red deer (Cervus elaphus) from central Europe. Environ Pollut 93:75–81

    Article  PubMed  CAS  Google Scholar 

  • Kierdorf U, Kierdorf H, Sedlacek F, Fejerskov O (1996b) Structural changes in fluorosed dental enamel of red deer (Cervus elaphus L.) from a region with severe environmental pollution by fluorides. J Anat 188:183–195

    PubMed  Google Scholar 

  • Krook L, Maylin GA (1979) Chronic fluoride poisoning in Cornwall Island cattle. Cornell Vet 69(8suppl):1–70

    PubMed  Google Scholar 

  • Machoy Z, Dabkowska E, Samujlo D, Ogonski T, Raczynski J, Gebczynska Z (1995) Relationship between fluoride content in bones and the age in European elk (Alces alces L.). Comp Biochem Physiol C 111:117–120

    Article  PubMed  CAS  Google Scholar 

  • NRC (National Research Council) (2006) Fluoride in drinking water: a scientific review of EPA's standards. National Academies, Washington, DC, 530 pp

    Google Scholar 

  • Richter H, Kierdorf U, Richards A et al (2011) Fluoride concentration in dentine as a biomarker of fluoride intake in European roe deer (Capreolus capreolus)—an electron-microprobe study. Arch Oral Biol 56:785–792

    Article  PubMed  CAS  Google Scholar 

  • Rigalli A, Pera LI, Di Loreto V, Brun LR (2007) Determinación de la concentración de flúor en muestras biológicas. Editorial de la Universidad Nacional de Rosario, Rosario

    Google Scholar 

  • Salvaneschi JP, García JR (2009) El bocio endémico en la República Argentina. Antecedentes, extensión y magnitud de la endemia, antes y después del empleo de la sal enriquecida con yodo. Segunda parte. Rev Arg Endocrinol Metabol 46:35–57

    Google Scholar 

  • Schultz M, Kierdorf U, Sedlacek F, Kierdorf H (1998) Pathological bone changes in the mandibles of wild red deer (Cervus elaphus L.) exposed to high environmental levels of fluoride. J Anat 193:431–442

    Article  PubMed  CAS  Google Scholar 

  • Shupe JL, Bagley CV, Karram MH, Callan RJ (1992) Placental transfer of fluoride in Holstein cows. Vet Hum Toxicol 34:1–4

    PubMed  CAS  Google Scholar 

  • Susheela AK, Bhatnagar M (2002) Reversal of fluoride induced cell injury through elimination of fluoride and consumption of diet rich in essential nutrients and antioxidants. Mol Cell Biochem 234(235):335–340

    Article  PubMed  Google Scholar 

  • Vikoren T, Stuve G (1996) Fluoride exposure in cervids inhabiting areas adjacent to aluminum smelters in Norway. II. Fluorosis. J Wildl Dis 32:181–189

    Article  PubMed  CAS  Google Scholar 

  • Walton KC, Ackroyd S (1988) Fluoride in mandibles and antlers of roe and red deer from different areas of England and Scotland. Environ Pollut 54:17–27

    Article  PubMed  CAS  Google Scholar 

  • Wilson T, Stewart C, Bickerton H, et al. (2012) The health and environmental impacts of the June 2011 Puyehue-Cordón Caulle volcanic complex eruption. Report on the findings of a multidisciplinary team investigation, 2012. 34 pp. www.diarioandino.com.ar/diario/wp-content/uploads/2012/06/Impactos-en-la-salud-y-el-ambiente-tras-la-erupci%C3%B3n-de-Junio-2011-de-CVPCC-Mayo-2012.pdf Accessed 1 Nov 2012

  • Xu Y, Lu C, Zhang X (1994) The effect of fluoride on the level of intelligence in children. Endemic Dis Bull 9:83–84

    CAS  Google Scholar 

  • Zhao W, Zhu H, Yu Z et al (1998) Long-term effects of various iodine and fluorine doses on the thyroid and fluorosis in mice. Endocr Regul 32:63–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was done on private land within a natural reserve of the Argentine Administración de Parques Nacionales (permit 070-2012). The authors are grateful to Juan Jones, Konrad Bailey, Pio Pigorini, Lalo Martinez, and Ricky Aquirre for facilitating access and allowing us to work on their properties. Logistics were provided by DeerLab, Argentina, and we also thank Swazi New Zealand for protective field garments, Rubén Kodjaian for providing our office with crucial logistics via the Hostería El Retorno, and Beat Fuchs for his dedicated field assistance.

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner T. Flueck.

Additional information

Communicated by C. Gortázar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flueck, W.T., Smith-Flueck, J.A.M. Temporal kinetics of fluoride accumulation: from fetal to adult deer. Eur J Wildl Res 59, 899–903 (2013). https://doi.org/10.1007/s10344-013-0734-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-013-0734-7

Keywords

Navigation