Skip to main content
Log in

Determination of the minimum number of microsatellite markers for individual genotyping in wild boar (Sus scrofa) using a test with close relatives

  • Short Communication
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

In the context of developing a noninvasive, practicable method for population size estimation in wild boar, we present a stepwise procedure to reduce the number of required microsatellite markers for individual genotyping. Step1: an initial marker set of 12 microsatellite loci was tested for species specificity with nontarget DNA and resulted in an exclusion of two markers. Step 2: a variability test regarding heterozygosity and deviations from Hardy–Weinberg equilibrium led to the rejection of two further markers. Step 3: the remaining eight markers were tested for transferability across populations with three separate wild boar sample sets. Step 4: on the basis of probability of identity values, a reduction from eight to five markers was possible. Step 5: a novel test using tissue samples from female wild boars and their embryos provided evidence that four variable microsatellite markers and one sex marker are sufficient for individual identification of close relatives. Step 6: feces samples were finally used to estimate PCR (PS) and genotyping success (GS). In conclusion, we recommend a specific four-marker combination with both PS and GS >50% for a reliable individual identification in noninvasive population size estimation of wild boar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Adams J, Waits L (2007) An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conserv Genet 8(1):123–131

    Article  CAS  Google Scholar 

  • Alexander LJ, Rohrer GA, Beattie CW (1996) Cloning and characterization of 414 polymorphic porcine microsatellites. Anim Genet 27(3):137–148

    Article  PubMed  CAS  Google Scholar 

  • Arrendal J, Vila C, Bjorklund M (2007) Reliability of noninvasive genetic census of otters compared to field censuses. Conserv Genet 8(5):1097–1107

    Article  Google Scholar 

  • Briedermann L (1990) Schwarzwild. Deutscher Landwirtschaftsverlag, Berlin

    Google Scholar 

  • Broquet T, Menard N, Petit E (2007) Non-invasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8(1):249–260

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12(7):2003–2009

    Article  PubMed  Google Scholar 

  • Csilléry K, Johnson T, Beraldi D, Clutton-Brock T, Coltman D, Hansson B, Spong G, Pemberton JM (2006) Performance of marker-based relatedness estimators in natural populations of outbred vertebrates. Genetics 173(4):2091–2101

    Article  PubMed  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heridity 93:504–509

    Article  CAS  Google Scholar 

  • Delgado R, Fernandez-Llario P, Azevedo M, Beja-Pereira A, Santos P (2008) Paternity assessment in free-ranging wild boar (Sus scrofa)—are littermates full-sibs? Mamm Biol 73(3):169–176

    Article  Google Scholar 

  • Frantz AC, Pope LC, Carpenter PJ, Roper TJ, Wilson GJ, Delahay RJ, Burke T (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12(6):1649–1661

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Zemanova B, Roche K, Hajek B (2009) An evaluation of field and noninvasive genetic methods for estimating Eurasian otter population size. Conserv Genet 10(6):1667–1681

    Article  Google Scholar 

  • Hoffman J, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14(2):599–612

    Article  PubMed  CAS  Google Scholar 

  • Hood GM (2010) Poptools version 3.2.3. Available on the internet. URL http://www.poptools.org

  • Iacolina L, Scandura M, Bongi P, Apollonio M (2009) Nonkin associations in wild boar social units. J Mammal 90(3):666–674

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1006

    Article  PubMed  Google Scholar 

  • Kawarasaki T, Kohsaka T, Sone M, Yosshida M, Bamba K (1995) Detection of Y-bearing porcine spermatozoa by in-situ hybridization using digoxigenin-labeled, porcine male-specific DNA-probe produced by polymerase chain-reaction. Mol Reprod Dev 40(4):455–459

    Article  PubMed  CAS  Google Scholar 

  • Keuling O, Stier N, Roth M (2008) Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur J Wildl Res 54(3):403–412

    Article  Google Scholar 

  • Knapp S, Craig B, Waits L (2009) Incorporating genotyping error into non-invasive DNA-based mark-recapture population estimates. J Wildlife Manage 73(4):598–604

    Article  Google Scholar 

  • Laval G, Iannuccelli N, Legault C, Milan D, Groenen MA, Giuffra E, Andersson L, Nissen PH, Jorgensen CB, Beeckmann P, Geldermann H, Foulley JL, Chevalet C, Ollivier L (2000) Genetic diversity of eleven European pig breeds. Genet Sel Evol 32(2):187–203

    Article  PubMed  CAS  Google Scholar 

  • Lowden S, Finlayson H, Macdonald A, Downing A, Goodman S, Leus K, Kaspe L, Wahyuni E, Archibald A (2002) Application of Sus scrofa microsatellite markers to wild suiformes. Conserv Genet 3(3):347–350

    Article  CAS  Google Scholar 

  • Lukacs P, Burnham K (2005) Review of capture–recapture methods applicable to noninvasive genetic sampling. Mol Ecol 14(13):3909–3919

    Article  PubMed  Google Scholar 

  • Marucco F, Pletscher D, Boitani L, Schwartz M, Pilgrim K, Lebreton J (2009) Wolf survival and population trend using non-invasive capture–recapture techniques in the Western Alps. J Appl Ecol 46(5):1003–1010

    Article  Google Scholar 

  • Mills L, Citta J, Lair K, Schwartz M, Tallmon D (2000) Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol Appl 10(1):283–294

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R-Core-team (2009) nlme: linear and nonlinear mixed effects models. R package version 3.1-92

  • Poteaux C, Baubet E, Kaminski G, Brandt S, Dobson F, Baudoin C (2009) Socio-genetic structure and mating system of a wild boar population. J Zool 278(2):116–125

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43(2):258–275

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW (1994) A microsatellite linkage map of the porcine genome. Genetics 136(1):231–245

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sodeikat G, Pohlmeyer K (2007) Impact of drive hunts on daytime resting site areas of wild boar family groups (Sus scrofa L.). Wildl Biol Pract 3(1):28–38

    Article  Google Scholar 

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68(1–2):41–55

    Article  Google Scholar 

  • Toigo C, Servanty S, Gaillard J, Brandt S, Baubet E (2008) Disentangling natural from hunting mortality in an intensively hunted wild boar population. J Wildlife Manage 72(7):1532–1539

    Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2(3):377–379

    Google Scholar 

  • Valière N, Bonenfant C, Toigo C, Luikart G, Gaillard J, Klein F (2007) Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer. Conserv Genet 8(1):69–78

    Article  Google Scholar 

  • Van Horn RC, Altmann J, Alberts SC (2008) Can't get there from here: inferring kinship from pairwise genetic relatedness. Anim Behaviour 75(3):1173–1180

    Article  Google Scholar 

  • Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H, Bertorelle G (2003) The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): a microsatellite analysis. Mol Ecol 12(3):585–595

    Article  PubMed  CAS  Google Scholar 

  • Waits J, Leberg P (2000) Biases associated with population estimation using molecular tagging. Anim Conserv, AUG, pp 191–199

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256

    Article  PubMed  CAS  Google Scholar 

  • Walsh P, Metzger D, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 10 (4):506–513

    Google Scholar 

  • Wilberg MJ, Dreher BP (2004) Genecap: a programm for analysis of multilocus genotype data for non-invasive sampling and capture–recapture population estimation. Mol Ecol Notes 4(4):783–785

    Article  Google Scholar 

  • Wilson G, Frantz A, Pope L, Roper T, Burke T, Cheeseman C, Delahay R (2003) Estimation of badger abundance using faecal DNA typing. J Appl Ecol 40(4):658–666

    Article  Google Scholar 

  • Woods J, Paetkau D, Lewis D (1999) Genetic tagging of free-ranging black and brown bears. Wildlife Soc B 27:616–627

    Google Scholar 

Download references

Acknowledgements

We thank C. Ebert, D. Huckschlag and U. Hohmann from the Research Institute of Forest Ecology and Forestry, Rhineland-Palatinate and G. Sodeikat and O. Keuling from the Institute of Wildlife Research in Hannover for the collection of samples. Furthermore, we thank T. Bürgi for technical advices and C. Wallnisch, J. Schürings and B. Müller for lab assistance as well as S. Baldauf for statistical support with the lme models. This project was supported by the Foundation “Rheinland-Pfalz für Innovation”, and the Ministry for Environment and Forestry, Rhineland-Palatinate. KK was supported through a two-year PhD scholarship from the Lotto Foundation Rhineland-Palatinate.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Kolodziej or K. Theissinger.

Additional information

Communicated by P. C. Alves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolodziej, K., Theissinger, K., Brün, J. et al. Determination of the minimum number of microsatellite markers for individual genotyping in wild boar (Sus scrofa) using a test with close relatives. Eur J Wildl Res 58, 621–628 (2012). https://doi.org/10.1007/s10344-011-0588-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-011-0588-9

Keywords

Navigation