Skip to main content

Advertisement

Log in

Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with capture–mark–resight population estimates

  • Original Paper
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Although accurate estimates of wild boar (Sus scrofa) populations are crucial for any effective resource management or pest control programme, this species is well-known to be difficult to monitor. We conducted a 10-year study in a fenced Mediterranean forest (Rome, Italy) to evaluate nocturnal line transect sampling performances. We focused on its accuracy in monitoring changes in density, which was independently estimated by capture–mark–resight (CMR) performed on counts at feeding sites. We carried out night surveys in the autumn of 2001–2010, using portable infrared cameras to detect animals. We sampled on foot to cover the whole study area and the different habitat types evenly. However, to ensure safe working conditions during night and to limit disturbance, we placed transects along paths and forest roads. Therefore, we investigated the potential impact of our convenience sampling on the detection process, using radiolocations of wild boars to assess their distribution with respect to selected transects. We found that our survey design should not have biased our estimates and that densities and coefficients of variations from line transect sampling were consistent with CMR results. Although labour-intensive, we believe that our approach can improve wild boar monitoring effectively, even in concealing habitats, providing decision makers with accurate estimates (and quantified confidence limits) which can help to develop the most appropriate management programme. Moreover, the current low price of new-generation infrared cameras can also increase strongly the cost-effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acevedo P, Ruiz-Fons F, Vicente J, Reyes-García AR, Alzaga V, Gortázar C (2008) Estimating red deer abundance in a wide range of management situations in Mediterranean habitats. J Zool 276:37–47

    Article  Google Scholar 

  • Anderson DR (2001) The need to get the basics right in wildlife field studies. Wildl Soc Bull 29:1294–1297

    Google Scholar 

  • Bächler E, Liechti F (2007) On the importance of g(0) for estimating bird population densities with standard distance-sampling: implications from a telemetry study and a literature review. Ibis 149:693–700

    Article  Google Scholar 

  • Borchers DL, Buckland ST, Zucchini W (2002) Estimating animal abundance. Springer, London

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling—estimating abundance of biological populations. Oxford University Press, Oxford

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR, Laake JL (1980) Estimation of density from line transect sampling of biological populations. Wildlife Monographs 72:1–202

    Google Scholar 

  • Butler MJ, Wallace MC, Ballard WB, De Maso SJ, Applegate RD (2005) From the field: the relation of Rio Grande wild turkey distributions to roads. Wildl Soc Bull 3:745–748

    Article  Google Scholar 

  • Cahill S, Llimona F, Gràcia J (2003) Spacing and nocturnal activity of wild boar Sus scrofa in a Mediterranean metropolitan park. Wildli Biol 9:3–13

    Google Scholar 

  • Carnevali L, Pedrotti L, Riga F, Toso S (2009) Wild boar. In: Ungulates in Italy. Status, distribution, abundance, management and hunting of Ungulate populations in Italy. Report 2001–2005. Biologia e Conservazione della Fauna 117, pp 37–49

  • Caughley G (1977) Analysis of vertebrate populations. Wiley, Brisbane

    Google Scholar 

  • Choquet R, Lebreton JD, Gimenez O, Reboulet A-M, Pradel R (2009) U-CARE: utilities for performing goodness of fit tests and manipulating capture–recapture data. Ecography 32:1071–1074

    Article  Google Scholar 

  • Cooch E, White G (2008) A gentle introduction to Program Mark, 8th edn. http://www.phidot.org/software/mark/docs/book/

  • Coulson T, Albon SD, Guinness F, Pemberton JM, Clutton-Brock TH (1997) Population substructure, local density and calf winter survival in red deer, Cervus elaphus. Ecology 78:852–863

    Google Scholar 

  • Coulson T, Albon SD, Pilkington G, Clutton-Brock TH (1999) Small scale spatial dynamics in a fluctuating ungulate population. J Anim Ecol 68:658–671

    Article  Google Scholar 

  • Dunn WC, Donnelly JP, Krausmann WJ (2002) Using thermal infrared sensing to count elk in the south western United States. Wildl Soc Bull 30:963–967

    Google Scholar 

  • Ebert C, Kolodziej K, Schikora TF, Schulz HK, Hohmann U (2009) Is non-invasive genetic population estimation via faeces sampling feasible for abundant mammals with low defecation rates? A pilot study on free ranging wild boar (Sus scrofa) in south-west Germany. Acta Silvatica et Lignaria Hungarica 5:167–177

    Google Scholar 

  • Elphick CS (2008) How you count counts: the importance of methods research in applied ecology. J Appl Ecol 45:1313–1320

    Article  Google Scholar 

  • Fickel J, Hohmann U (2006) A methodological approach for non-invasive sampling for population size estimates in wild boars (Sus scrofa). Eur J Wildl Res 52:28–33

    Article  Google Scholar 

  • Focardi S, De Marinis AM, Rizzotto M, Pucci A (2001) Comparative evaluation of thermal infrared imaging and spotlighting to survey wildlife. Wildl Soc Bull 29:133–139

    Google Scholar 

  • Focardi S, Isotti R, Tinelli A (2002) Line transect estimates of ungulate populations in a Mediterranean forest. J Wildl Manag 66:48–58

    Article  Google Scholar 

  • Focardi S, Montanaro P, Isotti R, Ronchi F, Scacco M, Calmanti R (2005) Distance sampling effectively monitored a declining population of Italian roe deer Capreolus capreolus italicus. Oryx 39:421–428

    Article  Google Scholar 

  • Focardi S, Gaillard J-M, Ronchi F, Rossi S (2008) Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate. J Mammal 89:1113–1123

    Article  Google Scholar 

  • Franzetti B, Focardi S (2006) La stima di popolazione degli ungulati mediante distance sampling e termocamera a infrarossi. Ministero Politiche Agricole Alimentari e Forestali—Istituto Nazionale per la Fauna Selvatica. Documenti Tecnici 26

  • Geisser H, Reyer H-U (2004) Efficacy of hunting, feeding and fencing to reduce crop damage by wild boars. J Wildl Manag 68:939–946

    Article  Google Scholar 

  • Gibbs JP (2000) Monitoring populations. In: Boitani L, Fuller T (eds) Research techniques in animal ecology. Columbia University Press, New York, pp 213–252

    Google Scholar 

  • Gill RMA, Thomas ML, Stocker DR (1997) The use of portable thermal imaging for estimating deer population density in forest habitats. J Appl Ecol 34:1273–1286

    Article  Google Scholar 

  • Gordon IJ, Hester AJ, Festa-Bianchet M (2004) The management of wild large herbivores to meet economic, conservation and environmental objectives. J Appl Ecol 41:1021–1031

    Article  Google Scholar 

  • Hanson LB, Grand JB, Mitchell MS, Jolley DB, Sparklin BD, Ditchkoff SS (2008) Change-in-ratio density estimator for feral pigs is less biased than closed mark–recapture estimates. Wildl Res 35:695–699

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall/CRC, London

    Google Scholar 

  • Hebeisen C, Fattebert J, Baubet E, Fisher C (2008) Estimating wild boar (Sus scrofa) abundance and density using capture–resights in Canton of Geneva, Switzerland. Eur J Wild Res 54:391–401

    Article  Google Scholar 

  • Hedley SL, Buckland ST, Borchers DL (2004) Spatial distance sampling models. In: Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (eds) Advanced distance sampling. Oxford University Press, New York, pp 48–70

    Google Scholar 

  • Hiby L, Krishna MB (2001) Line transect sampling from a curving path. Biometrics 57:727–731

    Article  PubMed  CAS  Google Scholar 

  • Hounsome TD, Young RP, Davison J, Yarnell RW, Trewby ID, Garnett BT, Garnett BT, Delahay RJ, Wilson GJ (2005) An evaluation of distance sampling to estimate badger (Meles meles) abundance. J Zool 266:81–87

    Article  Google Scholar 

  • Iannuzzo D, Focardi S, Elisabetta Raganella-Pelliccioni E, Toso S (2010) A method to estimate roe deer (Capreolus capreolus) density at various spatial scales in a fragmented landscape. Wildl Biol 16:1–9

    Article  Google Scholar 

  • Jezierski W (1977) Longevity and mortality rate in a population of wild boar. Acta Theriol 22:337–348

    Google Scholar 

  • Keitt TH, Bjornstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modelling organism–environment interactions. Ecography 25:616–625

    Article  Google Scholar 

  • Keuling O, Stier N, Roth M (2008) How does hunting reduce activity and spatial usage in wild boar Sus scrofa L.? Eur J Wildl Res 54:729–737

    Article  Google Scholar 

  • Kissell RE, Nimmo SK (2011) A technique to estimate white-tailed deer Odocoileus virginianus density using vertical-looking infrared imagery. Wildl Biol 17(1):85–92

    Article  Google Scholar 

  • Liu ZS, Wang XM, Teng LW, Cui DY, Li XQ (2008) Estimating seasonal density of blue sheep (Pseudois nayaur) in the Helan Mountain region using distance sampling methods. Ecol Res 23:393–400

    Article  Google Scholar 

  • Lutz W, Junghans D, Schmitz D, Müller T (2003) A long-term survey of pseudorabies virus infections in European wild boar of western Germany. Zeitschrift für Jagdwissenschaft 49(2):130–140

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modelling. Inferring patterns and dynamics of species occurrence. Academic Press Inc

  • Marini F, Franzetti B, Calabrese A, Cappellini S, Focardi S (2009) Response to human presence during nocturnal line transect surveys in fallow deer Dama dama and wild boar Sus scrofa. Eur J Wildl Res 55:107–115

    Article  Google Scholar 

  • Marques TA (2007) Incorporating measurement error and density gradients in distance sampling surveys. Ph.D. thesis, University of St. Andrews, Scotland

  • Marques FFC, Buckland ST (2003) Incorporating covariates into standard line transect analyses. Biometrics 38:349–363

    Google Scholar 

  • Marques FFC, Buckland ST (2004) Covariates models for the detection function. In: Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (eds) Advanced distance sampling. Oxford University Press, New York, pp 31–47

    Google Scholar 

  • Marques FFC, Buckland ST, Goffin D, Dixon CE, Borchers DL, Mayle BA, Peace AJ (2001) Estimating deer abundance from line transect surveys of dung: sika deer in southern Scotland. J Appl Ecol 59:924–935

    Google Scholar 

  • Mayle BA, Peace AJ, Gill RMA (1999) How many deer? A field guide to estimating deer population size. Field Book 18. The Forestry Commission, Edinburgh

    Google Scholar 

  • McClintock BT, White GC, Antolin MF, Tripp DW (2009) Estimating abundance using mark–resight when sampling is with replacement or the number of marked individuals is unknown. Biometrics 65:237–246

    Article  PubMed  Google Scholar 

  • McFadden JE, Hiller TL, Tyre AJ (2011) Evaluating the efficacy of adaptive management approaches: is there a formula for success? J Environ Manage 92(5):1354–1359

    Article  PubMed  Google Scholar 

  • Melzer F, Lohse R, Nieper H, Liebert M, Sachse K (2007) A serological study on brucellosis in wild boars in Germany. Eur J Wildl Res 53:153–157

    Article  Google Scholar 

  • Meriggi A, Sacchi O (2001) Habitat requirements of wild boars in the northern Apennines (N Italy): a multi-level approach. Ital J Zool 68:47–55

    Article  Google Scholar 

  • Monaco A, Franzetti B, Pedrotti L, Toso S (2003) Linee guida per la gestione del cinghiale. Ministero delle Politiche Agricole e Forestali—Istituto Nazionale per la Fauna Selvatica, Bologna

    Google Scholar 

  • Murrell KD, Ponzio E (2000) Trichinellosis: the zoonosis that won’t go quietly. Int J Parassitology 30:1339–1349

    Article  CAS  Google Scholar 

  • Naugle DE, Jenes JA, Kernohan RJ (1996) Use of thermal infrared sensing to estimate density of white-tailed deer. Wildl So Bull 24:37–47

    Google Scholar 

  • Nichols JD, Runge MC, Johnson FA, Williams BK (2007) Adaptive harvest management of North American waterfowl populations: a brief history and future prospects. J Ornithol 148(2):343–349

    Article  Google Scholar 

  • Pollock KH, Nichols JD, Simons TR, Farnsworth GL, Bailey LL, Sauer JR (2002) Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13(2):105–119

    Article  Google Scholar 

  • Ronchi F (2000) Uso e selezione dell’habitat da parte del cinghiale Sus scrofa nella Tenuta di Castelporziano (RM). Dissertation, Facoltà di Scienze Matematiche, Fisiche e Naturali, Università “La Sapienza”, Roma

  • Rosenberry CS, Diefenbach DR, Wallingford BD (2004) Reporting-rate variability and precision of white-tailed deer harvest estimates in Pennsylvania. J Wildl Manag 68(4):860–869

    Article  Google Scholar 

  • Rossi S, Fromont E, Pontier D, Crucière C, Hars J, Barrat J, Pacholek X, Artois M (2005) Incidence and persistence of classical swine fever in free-ranging wild boar (Sus scrofa). Epidemiol Infect 33(3):559–568

    Article  Google Scholar 

  • Saïd S, Tolon V, Brandt S, Baubet E (2011) Sex effect on habitat selection in response to hunting disturbance: the study of wild boar. Eur J Wildl Res. doi:10.1007/s10344-011-0548-4

  • Schley L, Dufrêne M, Krier A, Frantz AC (2008) Patterns of crop damage by wild boar Sus scrofa in Luxembourg over a 10-year period. Eur J Wildl Res 54:589–599

    Article  Google Scholar 

  • Scillitani L, Monaco A, Toso S (2010) Do intensive drive hunts affect wild boar (Sus scrofa) spatial behaviour in Italy? Some evidences and management implications. Eur J Wildl Res 56:307–318

    Article  Google Scholar 

  • Servanty S, Gaillard J-M, Ronchi F, Focardi S, Baubet É, Gimenez O (2011) Comparative population dynamics of two harvested wild boar populations: implications for management. J Appl Ecol 48:835–843

    Article  Google Scholar 

  • Sibbald AM, Hooper RJ, McLeod JE, Gordon IJ (2011) Responses of red deer (Cervus elaphus) to regular disturbance by hill walkers. European Journal of Wildlife Research 57(4):817–825

    Article  Google Scholar 

  • Skalski JR, Ryding KF, Millspaugh JJ (2005) Wildlife demography. Elsevier, Amsterdam

    Google Scholar 

  • Smart JCR, Ward AI, White PCL (2004) Monitoring woodland deer populations in the UK: an imprecise science. Mamm Rev 34:99–114

    Article  Google Scholar 

  • Southwell C, de la Mare B, Borchers D, Burt L (2004) Shipboard line transect surveys of crabeater seal abundance in the pack-ice off east Antarctica: evaluation of assumptions. Marine Mamm Sci 20:602–620

    Article  Google Scholar 

  • Stankowich T (2008) Ungulate flight responses to human disturbance: a review and meta-analysis. Biol Conserv 141:2159–2173

    Article  Google Scholar 

  • Strindberg S, Buckland ST, Thomas L (2004) Design of distance sampling surveys and geographic information systems. In: Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers D, Thomas L (eds) Advanced distance sampling. Oxford University Press, Oxford, pp 48–70

    Google Scholar 

  • Sweitzer RA, Van Vuren D, Gardner IA, Boyce WM, Waithman JD (2000) Estimating sizes of wild pig populations in the north and central coast regions of California. J Wildl Manag 64(2):531–543

    Article  Google Scholar 

  • Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14

    Article  PubMed  Google Scholar 

  • Toigo C, Servanty S, Gaillard J-M, Brandt S, Baubet E (2008) Disentangling natural from hunting mortality in an intensively hunted wild boar population. J Wildl Manag 72:1532–1539

    Google Scholar 

  • Tolon V, Dray S, Loison A, Zeileis A, Fischer C, Baubet E (2009) Responding to spatial and temporal variations in predation risk: space use of a game species in a changing landscape of fear. Can J Zool 87(12):1129–1137

    Article  Google Scholar 

  • Walter MJ, Hone J (2003) A comparison of 3 aerial survey techniques to estimate wild horse abundance in the Australian Alps. Wildl Soc Bull 31:1138–1149

    Google Scholar 

  • Waltert M, Meyer B, Shanyangi MW, Balozi JJ, Kitwara O, Qolli S, Krischke H, Muhlenberg M (2008) Foot surveys of large mammals in woodlands of western Tanzania. J Wildl Manag 72:603–610

    Article  Google Scholar 

  • Ward AI, White PCL, Critchley CH (2004) Roe deer Capreolus capreolus behaviour affects density estimates from distance sampling survey. Mamm Rev 34:315–319

    Article  Google Scholar 

  • Wegge P, Storaas T (2009) Sampling tiger ungulate prey by the distance method: lessons learned in Bardia National Park, Nepal. Anim Conserv 12:78–84

    Article  Google Scholar 

  • White GC (2005) Correcting wildlife counts using detection probabilities. Wildl Biol 32:211–216

    Google Scholar 

  • White GC, Bartmann RM, Carpenter LH, Garrott RA (1989) Evaluation of aerial line transects for estimating mule deer densities. J Wildl Manag 53:625–635

    Article  Google Scholar 

  • Williams BL, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic, San Diego

    Google Scholar 

  • Wingard GJ, Harris RB, Amgalanbaatar S, Reading RP (2011) Estimating abundance of mountain ungulates incorporating imperfect detection: argali (Ovis ammon) in the Gobi Desert, Mongolia. Wildl Biol 17:93–101

    Article  Google Scholar 

Download references

Acknowledgements

This ongoing study was made possible thanks to the support of the Italian Ministry of Agriculture and Forest, Segretariato Generale della Presidenza della Repubblica and the dedicated efforts of the Preserve personnel. All animal handling was performed according to Italian Law with the assistance of a veterinary staff led by Vittorio Guberti. The authors are very grateful to D. Borchers, D.R. Diefenbach and two anonymous reviewers for their useful comments on an early draft of this manuscript. Special thanks go to students and volunteers who helped capturing boars and to Elisabeth Klerks who checked the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Franzetti.

Additional information

Communicated by C. Gortázar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzetti, B., Ronchi, F., Marini, F. et al. Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with capture–mark–resight population estimates. Eur J Wildl Res 58, 385–402 (2012). https://doi.org/10.1007/s10344-011-0587-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-011-0587-x

Keywords

Navigation