Skip to main content

Advertisement

Log in

Antlers as biomonitors of environmental pollution by lead and fluoride: A review

  • Review
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Antlers are periodically cast and re-grown cranial appendages of deer. Both endochondral and intramembranous ossification are involved in the formation of antler bone. After velvet shedding, antlers are completely bony structures which are referred to as hard antlers. Growing antlers accumulate substances with an affinity to mineralized tissues. Among these substances are lead and fluoride. Due to the seasonally limited life span of antlers, the concentrations of lead and fluoride in hard antlers reflect uptake by the forming bone during a defined, species-specific period of some months. Antlers can thus be viewed as “naturally standardized” environmental samples that are well suited as biomonitors of environmental pollution by bone-seeking contaminants. Because hard antlers are collected by hunters as trophies and kept in private or public collections, material for study can be obtained rather easily. So far, lead concentrations in hard antlers have been reported only from Europe, whereas data for fluoride are available from both Europe and North America. Some studies compared contaminant concentrations in antlers from different regions, while others analyzed time-trends in contaminant levels in antlers from a single region. Using the latter approach, a pronounced drop of lead concentrations during recent decades has been reported for antlers from various European countries. This indicates a marked decline of environmental lead levels that can be attributed mainly to the phase-out of leaded gasoline and, in addition, to a reduction of lead emissions also from stationary sources. In Germany, a corresponding drop has also been recorded for fluoride concentrations in antlers, which is attributed to a decline of fluoride emissions from stationary sources due to improved emission-control measures. There is some evidence that exposure to higher levels of fluoride may lead to an impaired antler mineralization. Using antlers as biomonitors has been shown to be an efficient method for assessing environmental pollution by lead and fluoride at low cost. Further studies using this now well established approach are therefore encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balena R, Kleerekoper M, Foldes JA, Shih MS, Rao DS, Schober HC, Parfitt AM (1998) Effects of different regimens of sodium fluoride treatment for osteoporosis on the structure, remodeling and mineralization of bone. Osteoporosis Int 8:426–435

    Article  Google Scholar 

  • Banks WJ, Newbrey JW (1983a) Light microscopic studies of the ossification process in developing antlers. In: Brown RD (ed) Antler development in Cervidae. Caesar Kleberg Wildlife Research Institute, Kingsville Texas, pp 231–260

    Google Scholar 

  • Banks WJ, Newbrey JW (1983b) Antler development as a unique modification of mammalian endochondral ossification. In: Brown RD (ed) Antler development in Cervidae. Caesar Kleberg Wildlife Research Institute, Kingsville, Texas, pp 279–306

    Google Scholar 

  • Banks WJ, Epling GP, Kainer RA, Davis RW (1968a) Antler growth and osteoporosis. I. Morphological and morphometric changes in the costal compacta during the antler growth cycle. Anat Rec 162:387–397

    Article  Google Scholar 

  • Banks WJ, Epling GP, Kainer RA, Davis RW (1968b) Antler growth and osteoporosis. II. Gravimetric and chemical changes in the costal compacta during the antler growth cycle. Anat Rec 162:399–405

    Article  CAS  Google Scholar 

  • Baxter BJ, Andrews RN, Barrell GK (1999) Bone turnover associated with antler growth in red deer (Cervus elaphus). Anat Rec 256:14–19

    Article  CAS  PubMed  Google Scholar 

  • Bernhard K, Brubacher G, Hediger H, Bruhin H (1953) Untersuchungen über chemische Zusammensetzung und Aufbau des Hirschgeweihes. Experientia 9:138–140

    CAS  PubMed  Google Scholar 

  • Beyer WN, Heinz GH, Redmon-Norwood AW (eds) (1996) Environmental contaminants in wildlife: Interpreting tissue concentrations. Lewis Publishers, Boca Raton

    Google Scholar 

  • Boivin G, Meunier PJ (1990) Fluoride and bone: toxicological and therapeutic effects. In: Cohen RD, Lewis B, Alberti KGMM, Denman AM (eds) The metabolic and molecular basis of acquired disease. Baillière Tindall, London, pp 1803–1823

    Google Scholar 

  • Boivin G, Chavassieux P, Chapuy MC, Baud CA, Meunier PJ (1989) Skeletal fluorosis: histomorphometric analysis of bone changes and bone fluoride content in 29 patients. Bone 10:89–99

    Article  CAS  PubMed  Google Scholar 

  • Boivin G, Duriez J, Chapuy MC, Flautre B, Hardouin P, Meunier PJ (1993) Relationship between bone fluoride content and histological evidence of calcification defects in osteoporotic women treated long term with sodium fluoride. Osteoporosis Int 3:204–208

    Article  CAS  Google Scholar 

  • Borrero-Yu LM, Scanlon PF (1998) Fluoride effects on teeth, bones, and antlers of mule deer (Odocoileus hemionus): a progress report. Gibier Faune Sauvage 15:351–355

    Google Scholar 

  • Brockstedt-Rasmussen H, Leth Sørensen P, Ewald H, Melsen F (1987) The rhythmic relation between antler and bone porosity in Danish deer. Bone 8:19–22

    Article  CAS  PubMed  Google Scholar 

  • Brüggemeier FJ, Rommelspacher T (1992) Blauer Himmel über der Ruhr. Geschichte der Umwelt im Ruhrgebiet 1840 – 1990. Klartext-Verlag, Essen

    Google Scholar 

  • Bubenik AB (1966) Das Geweih. Hamburg, Parey

    Google Scholar 

  • Bubenik GA (1990) Neuroendocrine regulation of the antler cycle. In: Bubenik GA, Bubenik AB (eds) Horns, pronghorns, and antlers. Springer, New York, pp 265–297

    Google Scholar 

  • Bubenik GA (1993) Morphological differences in the antler velvet of Cervidae. In: Ohtaishi N, Sheng HI (eds) Deer of China. Elsevier, Amsterdam, pp 56–64

    Google Scholar 

  • Bubenik GA, Miller KV, Lister AL, Osborn DA, Bartoš L, Van der Kraak (2005) Testosterone and estradiol concentrations in serum, velvet skin, and growing antler bone of male white-tailed deer. J Exp Zool 303A:186–192

    Article  Google Scholar 

  • Chapman DI (1975) Antlers – bones of contention. Mammal Rev 5:121–172

    Google Scholar 

  • Chyla A, Lorenz K, Gaggi C, Renzoni A (1996) Pollution effects on wildlife: roe deer antlers as non-destructive bioindicator. Environ Prot Eng 22:65–70

    CAS  Google Scholar 

  • Corbet GB, Hill JE (1991) A world list of mammalian species, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Cronin SJ, Manoharan V, Hedley MJ, Loganathan P (2000) Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand. New Zeal J Agr Res 43:295–321

    CAS  Google Scholar 

  • Dobrowolska A (2002) Chemical composition of the red deer (Cervus elaphus) antlers, with particular reference to the toxic metal contents. Z Jagdwiss 48 Suppl:148–155

    Google Scholar 

  • Ewers U, Schlipköter HW (2001) Lead. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp 971–1014

    Google Scholar 

  • Foreman H, Roberts MB, Lilly EH (1961) Radioactivity in Cervidae antlers. Z Physik 164:537–545

    Article  CAS  Google Scholar 

  • Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K (1994) Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle x-ray-scattering study. J Bone Min Res 9:1541–1549

    CAS  Google Scholar 

  • Frøslie A, Sivertsen T, Lochmiller R (2001) Perissodactyla and Artiodactyla. In: Shore RF, Rattner BA (eds) Ecotoxicology of wild mammals. Wiley, Chichester, pp 497–550

    Google Scholar 

  • Garrott RA, Eberhardt LL, Otton JK, White PJ, Chaffee MA (2002) A geochemical trophic cascade in Yellowstone’s geothermal environments. Ecosystems 5:659–666

    Article  CAS  Google Scholar 

  • Goss RJ (1968) Inhibition of growth and shedding of antlers by sex hormones. Nature 220:83–85

    CAS  PubMed  Google Scholar 

  • Goss RJ (1983) Deer antlers: Regeneration, function, and evolution. Academic Press, New York

    Google Scholar 

  • Gray C, Hukkanen M, Konttinen YT, Terenghi G, Arnett TR, Jones SJ, Burnstock G, Polak JM (1992) Rapid neural growth: calcitonin gene-related peptide and substance P-containing nerves attain exceptional growth rates in regenerating deer antler. Neuroscience 50:953–963

    Article  CAS  PubMed  Google Scholar 

  • Grodzińska K, Grodziński W, Zeveloff SE (1983) Contamination of roe deer forage in a polluted forest of southern Poland. Environ Pollut A 30:257–276

    Article  Google Scholar 

  • Groves CP, Grubb P (1987) Relationships of living deer. In: Wemmer CM (ed) Biology and management of the Cervidae. Smithsonian Institution Press, Washington, D.C., pp 21–59

    Google Scholar 

  • Gruber GB (1937) Morphobiologische Untersuchungen am Cerviden-Geweih. Nachr Ges Wiss Göttingen Math Physik Kl NF Fachgr VI 3:9–63

    Google Scholar 

  • Han FX, Banin A, Su Y, Monts DL, Plodinec MJ, Kingery WL, Triplett GE (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504

    Article  CAS  PubMed  Google Scholar 

  • Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae. Syst Biol 52:206–228

    PubMed  Google Scholar 

  • Hawthorn J, Duckworth RB (1958) Fall-out radioactivity in a deer’s antlers. Nature 182:1294

    CAS  Google Scholar 

  • Hewison AJM, Danilkin A (2001) Evidence for separate specific status of European (Capreolus capreolus) and Siberian (C. pygargus) roe deer. Mamm Biol 66:13–21

    Google Scholar 

  • Hillman JR, Davis RW, Abdelbaki YZ (1973) Cyclic bone remodeling in deer. Calcif Tissue Res 12:323–330

    CAS  PubMed  Google Scholar 

  • Hong S, Candelone JP, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265:1841–1843

    CAS  Google Scholar 

  • Jaczewski Z (1954) The effect of changes in length of daylight on the growth of antlers in the deer (Cervus elaphus L.). Folia Biol (Kraków) 2:133–143 [in Polish]

    Google Scholar 

  • Janis CM, Scott KM (1987) The interrelationships of higher Ruminant families with special emphasis on the members of the Cervoidea. American Museum Novitates 2893, pp 1–85

    Google Scholar 

  • Jones RL, Weeks HP (1996) Geophagy. In: Fairbrother A, Locke LN, Hoff GL (eds) Noninfectious diseases of wildlife, 2nd edn. Manson Publishing, London, pp 19–23

    Google Scholar 

  • Jop K (1979) Quality evaluation of roe-deer antlers from an industrial region in southern Poland. Acta Theriol 24:23–34

    Google Scholar 

  • Kardell L, Källman S (1986) Heavy metals in antlers of roe deer from two Swedish forests, 1968–1983. Ambio 15:232–235

    CAS  Google Scholar 

  • Karstad L (1967) Fluorosis in deer (Odocoileus virginianus). Bull Wildl Dis Assoc 3:42–46

    Google Scholar 

  • Kettrup A, Marth P (1998) Specimen banking as an environmental surveillance tool. In: Schüürmann G, Markert B (eds) Ecotoxicology: Ecological fundamentals, chemical exposure, and biological effects. Wiley, New York, pp 413–436

    Google Scholar 

  • Kierdorf H, Kierdorf U (1999) Bleigehalte in Rothirschgeweihen aus Nordrhein-Westfalen: Ein Beitrag zum historischen Biomonitoring. Z Jagdwiss 45:96–106

    Google Scholar 

  • Kierdorf H, Kierdorf U (2000a) Roe deer antlers as monitoring units for assessing temporal changes in environmental pollution by fluoride and lead in a German forest area over a 67-year period. Arch Environ Contam Toxicol 39:1–6

    Article  CAS  Google Scholar 

  • Kierdorf H, Kierdorf U (2000b) Vergleichende Untersuchungen zum Bleigehalt von Rehgeweihen aus verschiedenen Regionen Nordrhein-Westfalens (Deutschland) im Zeitraum 1990–1999. Z Jagdwiss 46:270–278

    Google Scholar 

  • Kierdorf U, Kierdorf H (2000) The fluoride content of antlers as an indicator of fluoride exposure in red deer (Cervus elaphus): A historical biomonitoring study. Arch Environ Contam Toxicol 38:121–127

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf H, Kierdorf U (2001) Rekonstruktion zeitlicher Trends der Umweltbelastung mit Fluor und Blei im Raum Iserlohn/Hemer (Märkischer Kreis, Deutschland) anhand der Analyse von Rehgeweihen. Z Jagdwiss 47:201–210

    Google Scholar 

  • Kierdorf U, Kierdorf H (2001) Fluoride concentrations in antler bone of roe deer (Capreolus capreolus) indicate decreasing fluoride pollution in an industrialized area of western Germany. Environ Toxicol Chem 20:1507–1510

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf H, Kierdorf U (2002) Reconstruction of a decline of ambient lead levels in the Ruhr area (Germany) by studying lead concentrations in antlers of roe deer (Capreolus capreolus). Sci Total Environ 296:151–158

    Article  Google Scholar 

  • Kierdorf U, Kierdorf H (2002) Assessing regional variation of environmental fluoride concentration in western Germany by analysis of antler fluoride content in roe deer (Capreolus capreolus). Arch Environ Contam Toxicol 42:99–104

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf U, Kierdorf H (2003) Temporal variation of fluoride concentration in antlers of roe deer (Capreolus capreolus) living in an area exposed to emissions from iron and steel industry, 1948–2000. Chemosphere 52:1677–1681

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf H, Kierdorf U (2004) The use of antlers to monitor temporal variation in environmental lead levels: a case study from an industrialized area in Germany. Eur J Wildl Res 50:62–66

    Google Scholar 

  • Kierdorf U, Kierdorf H (2004) Bone formation in antlers. In: Suttie JM, Haines S, Li C (eds) Advances in antler science and product technology. Proc 2nd ASPT Symp, Queenstown, New Zealand, pp 55–63

  • Kierdorf H, Kierdorf U, Szuwart T, Clemen G (1995) A light microscopic study of primary antler development in fallow deer (Dama dama). Ann Anat 177:525–532

    Google Scholar 

  • Kierdorf U, Richards A, Sedlacek F, Kierdorf H (1997) Fluoride content and mineralization of red deer (Cervus elaphus) antlers and pedicles from fluoride polluted and uncontaminated regions. Arch Environ Contam Toxicol 32:222–227

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf U, Kierdorf H, Boyde A (2000) Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study. J Anat 196:71–83

    Article  PubMed  Google Scholar 

  • Kierdorf U, Kierdorf H, Lutz W (2001) Rekonstruktion der Umweltgeschichte. Fluorid- und Bleigehalt in Geweihen von Reh und Rothirsch. LÖBF-Jahresbericht 2000:69–76

    Google Scholar 

  • Kierdorf U, Kierdorf H, Schultz M, Rolf HJ (2004) Histological structure of antlers in castrated male fallow deer (Dama dama). Anat Rec 281A:1352–1362

    Article  Google Scholar 

  • Kolle R, Kierdorf U, Fischer K (1993) Effects of an antiandrogen treatment on morphological characters and physiological functions of male fallow deer (Dama dama L.). J Exp Zool 267:288–298

    CAS  PubMed  Google Scholar 

  • Kurt F (1988) Rehe (Gattung Capreolus). In: Grzimek B (ed) Grzimeks Enzyklopädie Säugetiere, Vol 5. Kindler-Verlag, München, pp 201–212

  • Lafage MH, Balena R, Battle MA, Shea M, Seedor JG, Klein H, Hayes WC, Rodan GA (1995) Comparison of alendronate and sodium fluoride effects on cancellous and cortical bone in minipigs. J Clin Invest 95:2127–2133

    Google Scholar 

  • Lister AM, Grubb P, Summer SRM (1998) Taxonomy, morphology and evolution of European roe deer. In: Andersen R, Duncan P, Linnell JDC (eds) The European roe deer: the biology of success. Scandinavian University Press, Oslo, pp 23–46

    Google Scholar 

  • Lorenz K, Chyla A, Gorski J (1991) Impacts of environmental pollution in the creation of anomalous roe deer antlers. Trans 18th IUGB Congr, Krakow 1987. Swiat Press, Krakow, Warszawa, pp 399–400

  • Lundy MW, Stauffer M, Wergedal JE, Baylink DJ, Featherstone JDB, Hodgson SF, Riggs BL (1995). Histomorphometric analysis of iliac crest bone biopsies in placebo-treated versus fluoride-treated subjects. Osteoporosis Int 5:115–129

    Article  CAS  Google Scholar 

  • MARC (1985) Historical monitoring. Report No. 31, Monitoring and Assessment Research Centre, University of London, London

  • Markert BA, Breure AM, Zechmeister G (2003) Definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister G (eds) Bioindicators and biomonitors: Principles, concepts and applications. Elsevier, Amsterdam, pp 3–39

    Google Scholar 

  • Medvedev N (1995) Concentrations of cadmium, lead and sulphur in tissues of wild, forest reindeer from north-west Russia. Environ Pollut 90:1–5

    Article  CAS  PubMed  Google Scholar 

  • Meister WW (1956) Changes in the histological structure of the long bones of white-tailed deer (Odocoileus virginianus) during the growth of the antlers. Anat Rec 124:709–721

    Article  CAS  PubMed  Google Scholar 

  • Moen RA, Pastor J, Cohen Y (1999) Antler growth and extinction of Irish elk. Evol Ecol Res 1:235–249

    Google Scholar 

  • Mosekilde L, Kragstrup J, Richards A (1987) Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcif Tissue Int 40:318–322

    CAS  PubMed  Google Scholar 

  • Muir PD, Sykes AR, Barrell GK (1985) Mineralisation during antler growth in red deer. Royal Soc New Zeal Bull 22:251–254

    Google Scholar 

  • Ng AH, Hercz G, Kandel R, Grynpas MD (2004) Association between fluoride, magnesium, aluminium and bone quality in renal osteodystrophy. Bone 34:216–224

    Article  CAS  PubMed  Google Scholar 

  • Nowak RM (1991) Walker’s mammals of the world, Vol. 2. 5th edn. Johns Hopkins University Press, Baltimore, p 1364

    Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Nriagu JO (1996) A history of global metal pollution. Science 272:223–224

    CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  PubMed  Google Scholar 

  • Pattee OH, Pain DJ (2003) Lead in the environment. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology, 2nd edn. Lewis Publishers, Boca Raton, pp 373–408

    Google Scholar 

  • Pokorny B, Glinšek A, Ribaric-Lasnik C (2004) Roe deer antlers as a historical bioindicator of lead pollution in the Šalek valley, Slovenia. J Atmos Chem 49:175–189

    Article  CAS  Google Scholar 

  • Price J, Allen S (2004) Exploring the mechanisms regulating regeneration of deer antlers. Phil Trans R Soc Lond B 359:809–822

    Article  CAS  Google Scholar 

  • Price JS, Oyajobi BO, Nalin AM, Frazer A, Russell RGG, Sandell LJ (1996) Chondrogenesis in the regenerating antler tip in red deer: Expression of collagen types I, IIA, IIB, and X demonstrated by in situ nucleic acid hybridization and immunocytochemistry. Dev Dyn 205:332–347

    Article  CAS  PubMed  Google Scholar 

  • Price JS, Faucheux C, Bord S, Loveridge N, Lanyon LE (2000) Estrogen regulates antler regeneration in male deer. J Bone Min Res 15(Suppl 1):S323

    Google Scholar 

  • von Raesfeld F, Neuhaus AH, Schaich K (1978) Das Rehwild, 8th edn. Parey, Hamburg

    Google Scholar 

  • Rolf HJ, Enderle A (1999) Hard fallow deer antler: a living bone till antler casting? Anat Rec 255:69–77

    Article  CAS  PubMed  Google Scholar 

  • Rolf HJ, Fischer K (1996) Serum testosterone, 5-α-dihydrotestosterone and different sex characteristics in male fallow deer (Cervus dama): a long-term experiment with accelerated photoperiods. Comp Biochem Physiol 115A:207–221

    Article  CAS  Google Scholar 

  • Samiullah Y, Jones KC (1991) Deer antlers as pollution monitors in the United Kingdom. Trans 18th IUGB Congr, Krakow 1987. Swiat Press, Krakow, Warszawa, pp 415–420

  • Samujło D, Machoy-Mokrzyńska A, Dabkowska E, Nowicka W, Paterkowski W (1994) Fluoride accumulation in European deer antlers. Environ Sci 2:189–194

    CAS  Google Scholar 

  • Sawicka-Kapusta K (1979) Roe deer antlers as bioindiactors of environmental pollution in southern Poland. Environ Pollut 19:283–293

    Article  CAS  Google Scholar 

  • Sawicka-Kapusta K, Dudzinski W, Cichonska M (1991) Heavy metals concentrations in roe deer antlers from Rogów (central Poland). Trans 18th IUGB Congr, Krakow 1987. Swiat Press, Krakow, Warszawa, pp 421–424

  • Schnare H (1992) Secondary sex characters and related physiological values in male fallow deer (Dama dama L.) and their relationships to changes in the annual cycle of daylengths: frequency alterations to 4- and 3-month photoperiodic cycles and subsequent re-synchronisation under natural conditions. J Exp Zool 261:331–339

    CAS  PubMed  Google Scholar 

  • Schönhofer F, Tataruch F, Friedrich M (1994) Strontium-90 in antlers of red deer: an indicator of environmental contamination by strontium-90. Sci Total Environ 157:323–332

    Article  PubMed  Google Scholar 

  • Schultz V (1964) Sampling white-tailed deer antlers for strontium-90. J Wildl Manage 28:45–49

    Google Scholar 

  • Shupe JL, Olson AE, Peterson HB, Low JB (1984) Fluoride toxicosis in wild ungulates. J Am Vet Med Assoc 185:1295–1300

    CAS  PubMed  Google Scholar 

  • Søgaard CH, Mosekilde L, Richards A, Mosekilde L (1994) Marked decrease in trabecular bone quality after five years of sodium fluoride therapy – assessed by biomechanical testing of iliac crest bone biopsies in osteoporotic patients. Bone 15:393–399

    Article  PubMed  Google Scholar 

  • Søgaard CH, Mosekilde L, Schwartz W, Leidig G, Minne HW, Ziegler R (1995) Effects of fluoride on rat vertebral body biomechanical competence and bone mass. Bone 16:163–169

    Article  PubMed  Google Scholar 

  • Søgaard CH, Mosekilde L, Thomsen JS, Richards A, McOsker JE (1997) A comparison of the effects of two anabolic agents (fluoride and PTH) on ash density and bone strength assessed in an osteopenic rat model. Bone 20:439–449

    Article  PubMed  Google Scholar 

  • Strandberg M, Strandgaard H (1995) 90 Sr in antlers and bone of a Danish roe deer population. J Environ Radioact 27:65–74

    Article  CAS  Google Scholar 

  • Su B, Wang YX, Lan H, Wang W, Zhang Y (1999) Phylogenetic study of complete cytochrome b genes in musk deer (genus Moschus) using museum samples. Mol Phylogenet Evol 12:241–249

    Article  CAS  PubMed  Google Scholar 

  • Sunwoo HH, Nakano T, Hudson RJ, Sim JS (1995) Chemical composition of antlers from wapiti (Cervus elaphus). J Agric Food Chem 43:2846–2849

    Article  CAS  Google Scholar 

  • Sunwoo HH, Nakano T, Hudson RJ, Sim JS (1998) Isolation, characterization and localization of glycosaminoglycans in the growing antlers of wapiti (Cervus elaphus). Comp Biochem Physiol B 120:273–283

    Article  CAS  PubMed  Google Scholar 

  • Suttie JW, Hamilton RJ, Clay AC, Tobin ML, Moore WG (1985) Effects of fluoride ingestion on white-tailed deer (Odocoileus virginianus). J Wildl Dis 21:283–288

    CAS  PubMed  Google Scholar 

  • Suttie JS, Dickie R, Clay AB, Nielsen P, Mahan WE, Baumann DP, Hamilton RJ (1987) Effects of fluoride emissions from a modern primary aluminum smelter on a local population of white-tailed deer (Odocoileus virginianus). J Wildl Dis 23:135–143

    CAS  PubMed  Google Scholar 

  • Suttie JM, Fennessy PF, Lapwood KR, Corson ID (1995) Role of steroids in antler growth of red deer stags. J Exp Zool 271:120–130

    CAS  PubMed  Google Scholar 

  • Tataruch F (1995) Red deer antlers as biomonitors for lead contamination. Bull Environ Contam Toxicol 55:332–337

    Article  CAS  PubMed  Google Scholar 

  • Tataruch F, Kierdorf H (2003) Mammals as biomonitors In: Markert BA, Breure AM, Zechmeister G (eds) Bioindicators and biomonitors: Principles, concepts and applications. Elsevier, Amsterdam, pp 737–772

    Google Scholar 

  • Tataruch F, Schönhofer F (1993) Reconstruction of environmental contamination of past decades by chemical analysis of red and roe deer antlers. Proc 21st IUGB Congr, Halifax 1993, Vol 2, pp 23–28

  • Tataruch F, Wolfsperger M (1995) Chemische Analysen an prähistorischen Rothirsch- und Riesenhirschgeweihen. Z Jagdwiss 41:225–228

    Google Scholar 

  • Tiller BL, Poston TM (2000) Mule deer antlers as biomonitors of strontium-90 on the Hanford site. J Environ Radioact 47:29–44

    Article  CAS  Google Scholar 

  • Turner CH, Hasegawa K, Zhang W, Wilson M, Li Y, Dunipace AJ (1995) Fluoride reduces bone strength in older rats. J Dent Res 74:1475–1481

    CAS  PubMed  Google Scholar 

  • Turner CH, Owan I, Brizendine EJ, Zhang W, Wilson ME, Dunipace AJ (1996) High fluoride intakes cause osteomalacia and diminished bone strength in rats with renal deficiency. Bone 19:595–601

    Article  CAS  PubMed  Google Scholar 

  • Turner CH, Hinckley WR, Wilson ME, Zhang W, Dunipace AJ (2001) Combined effects of diets with reduced calcium and phosphate and increased fluoride intake on vertebral bone strength and histology in rats. Calcif Tissue Int 69:51–57

    Article  CAS  PubMed  Google Scholar 

  • Ullrey DE (1983) Nutrition and antler development in white-tailed deer. In: Brown RD (ed) Antler development in Cervidae. Caesar Kleberg Wildlife Research Institute, Kingsville, Texas, pp 49–59

    Google Scholar 

  • Volmer K, Herzog A (1995) Rehwild näher betrachtet -Untersuchungen an Rehwild. Schriftenreihe des Arbeitskreises Wildbiologie an der Justus-Liebig-Universität Giessen eV, Heft 22

  • Waldo CM, Wislocki GB (1951) Observations on the shedding of the antlers of Virginia deer (Odocoileus virginianus borealis). Am J Anat 88:351–395

    Article  CAS  PubMed  Google Scholar 

  • Walton KC, Ackroyd S (1988) Fluoride in mandibles and antlers of roe and red deer from different areas of England and Scotland. Environ Pollut 54:17–27

    Article  CAS  PubMed  Google Scholar 

  • Weiss D, Shotyk W, Kempf O (1999) Archives of atmospheric lead pollution. Naturwissenschaften 86:262–275

    Article  CAS  Google Scholar 

  • WHO (2002) Fluorides. Environmental Health Criteria No 227. World Health Organization, Geneva

  • Wislocki GB (1942) Studies on the growth of deer antlers. I. On the structure and histogenesis of the antlers of the Virginia deer (Odocoileus virginianus borealis). Am J Anat 71:371–415

    Article  Google Scholar 

  • Wislocki GB, Singer M (1946) The occurrence and function of nerves in the growing antlers of deer. J Comp Neurol 85:1–19

    Article  Google Scholar 

  • Zhiwotschenko V (1988) Moschushirsche. In: Grzimek B (ed) Grzimeks Enzyklopädie Säugetiere, Vol 5. Kindler-Verlag, München, pp 133–136

Download references

Acknowledgements

Our work on antlers as pollution biomonitors would not have been possible without the generous help of many hunters, who donated antlers for analysis or allowed us to take bone samples from specimens in their possession. The original research was supported by grants from the Ministry of the Environment, Federal State of North Rhine-Westphalia, Germany, and the Deutsche Forschungsgemeinschaft. We are grateful to Ludek Bartoš and Dean Konjević for helpful comments on an earlier version of the manuscript. This paper is dedicated to Professor Hermann Hartwig, Cologne, on the occasion of his 95th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Kierdorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kierdorf, U., Kierdorf, H. Antlers as biomonitors of environmental pollution by lead and fluoride: A review. Eur J Wildl Res 51, 137–150 (2005). https://doi.org/10.1007/s10344-005-0093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-005-0093-0

Keywords

Navigation