Skip to main content
Log in

Impacts of Olive-Mill-Wastewater-Compost Associated with Microorganisms On Yield and Fruits Quality of Tomato Under Water Stress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

To date, the effect of Olive-Mill-Wastewater-Compost (OMWW-Compost) application combined with rhizospheric soil micro-organisms on tomato fruits biochemistry and quality under drought conditions has not been evaluated. The objective of this study is to highlight the effect of arbuscular-mycorrhizal-fungi (pure strain (M) and consortium (M’)), and/or plant growth-promoting-rhizobacteria (Actinomycetes (A) and consortium of two bacterial strains (B)), and/or OMWW-compost (C), on production, quality, fruits biochemistry and antioxidant richness under drought stress. The application of CM’A and CM’B increased the carotenoid content to 94 and 79%, as well as increased the phenol content to 66 and 51% respectively, compared to the control under stress conditions. The CM’A improved total tocopherols and ascorbic acid contents in fruits to 57 and 85% respectively, compared to the control under water stress. Dual inoculation of bacteria and mycorrhizal fungi combined with OMWW-compost appears to be a suitable alternative for drought stress management. The application of OMWW-compost in combination with rhizosphere microorganisms seems to offer the hope of a relatively cheap, easy to apply and effective way to alleviate drought stress and improve tomato fruits quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ait Rahou Y, Boutaj H, Ait-El-Mokhtar M et al (2022) Effect of beneficial indigenous microorganisms on tomato growth performance, productivity, and protection against Verticillium dahliae. J Plant Dis Prot 129:1163–1180. https://doi.org/10.1007/s41348-022-00616-5

    Article  CAS  Google Scholar 

  • Ait-El-Mokhtar M, El Amerany F, Fakhech A et al (2022) Cereals and Phytohormones under drought stress. In: Sustainable remedies for abiotic stress in cereals. Springer, pp 313–350

    Google Scholar 

  • Ait-Rahou Y, Boutaj H, Boutasknit A et al (2021) Colonization of tomato roots with arbuscular mycorrhizal fungi changes of antioxidative activity and improves tolerance to Verticillium dahliae. Plant Cell Biotechnol Mol Biol 22:65–81

    Google Scholar 

  • Akanbi-Gada MA, Ogunkunle CO, Vishwakarma V et al (2019) Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environ Technol Innov 14:100325

    Google Scholar 

  • Ali SS, Ahsan H, Zia MK et al (2020b) Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem 44:e13145

    PubMed  Google Scholar 

  • Alsharhan AS, Rizk ZE (2020) Overview on global water resources. In: Water resources and integrated management of the United Arab emirates. Springer, pp 17–61

    Google Scholar 

  • Angelakis AN, Do Monte MHFM, Bontoux L, Asano T (1999) The status of wastewater reuse practice in the Mediterranean basin: need for guidelines. Water Res 33:2201–2217

    CAS  Google Scholar 

  • Anli M, Baslam M, Tahiri A et al (2020) Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front Plant Sci 11:1560. https://doi.org/10.3389/fpls.2020.516818

    Article  Google Scholar 

  • Anli M, Boutasknit A, Ben-Laoaune R et al (2022) Use of biostimulants to improve drought tolerance in cereals. In: Sustainable remedies for abiotic stress in cereals. Springer, pp 519–555

    Google Scholar 

  • Armada E, Portela G, Roldán A, Azcón R (2014) Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma 232–234:640–648. https://doi.org/10.1016/j.geoderma.2014.06.025

    Article  CAS  Google Scholar 

  • Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O (2020) Waste management through composting: Challenges and potentials. Sustainability 12:1–23. https://doi.org/10.3390/su12114456

    Article  CAS  Google Scholar 

  • Ben-Laouane R, Baslam M, Ait-El-mokhtar M et al (2020) Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms 8:1–27. https://doi.org/10.3390/microorganisms8111695

    Article  CAS  Google Scholar 

  • Benabderrazik K, Kopainsky B, Tazi L et al (2021) Agricultural intensification can no longer ignore water conservation—A systemic modelling approach to the case of tomato producers in Morocco. Agric Water Manag 256:107082

    Google Scholar 

  • Berni R, Luyckx M, Xu X et al (2019) Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106

    CAS  Google Scholar 

  • Boutasknit A, Anli M, Tahiri A et al (2020) Potential effect of horse manure-green waste and olive pomace-green waste composts on physiology and yield of garlic (Allium sativum L.) and soil fertility. Gesunde Pflanz 72:285–295. https://doi.org/10.1007/s10343-020-00511-9

    Article  CAS  Google Scholar 

  • Boutasknit A, Baslam M, Ait-El-Mokhtar M et al (2021) Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Sci Rep 11:1–23. https://doi.org/10.1038/s41598-021-02018-3

    Article  CAS  Google Scholar 

  • Bradford HF, Ward HK (1976) On glutaminase activity in mammalian synaptosomes. Brain Res Brain Res Protoc 110:115–125

    CAS  Google Scholar 

  • de Brito AA, Campos F, dos Reis Nascimento A et al (2022) Non-destructive determination of color, titratable acidity, and dry matter in intact tomatoes using a portable Vis-NIR spectrometer. J Food Compos Analysis 107:104288

    Google Scholar 

  • Carminati A, Javaux M (2020) Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci 25:868–880

    CAS  PubMed  Google Scholar 

  • Caverzan A, Piasecki C, Chavarria G et al (2019) Defenses against ROS in crops and weeds: the effects of interference and herbicides. Int J Mol Sci 20:1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cegarra J, Paredes C, Roig A, Bernal MP, García D (1996) Use of olive mill wastewater compost for crop production. Int Biodeterior Biodegradation 38(3–4):193–203

    Google Scholar 

  • Chauhan M, Garg V, Zia G, Dutt R (2020) Potential role of phytochemicals of fruits and vegetables in human diet. Cancer 7:2

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    CAS  PubMed  Google Scholar 

  • Coyago-Cruz E, Corell M, Moriana A et al (2019) Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chem 277:480–489

    CAS  PubMed  Google Scholar 

  • Dimkić I, Janakiev T, Petrović M et al (2022) Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms—A review. Physiol Mol Plant Pathol 117:101754

    Google Scholar 

  • Direito R, Rocha J, Sepodes B, Eduardo-Figueira M (2021) Phenolic compounds impact on rheumatoid arthritis, inflammatory bowel disease and microbiota modulation. Pharmaceutics 13:145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dogru M, Kojima T, Simsek C, Tsubota K (2018) Potential role of oxidative stress in ocular surface inflammation and dry eye disease. Investig Ophthalmol Vis Sci 59:DES163–DES168

    Google Scholar 

  • El Amerany F, Rhazi M, Wahbi S et al (2020) The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Sci Hortic 261:109015. https://doi.org/10.1016/j.scienta.2019.109015

    Article  CAS  Google Scholar 

  • Elkelish A, Qari SH, Mazrou YSA et al (2020) Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock proteins. Plants 9:431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Google Scholar 

  • Fernandez-Orozco R, Frias J, Zielinski H et al (2008) Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. jutro and Glycine max cv. merit. Food Chem 111:622–630

    CAS  Google Scholar 

  • Gaaloul N, Eslamian S, Katlance R (2021) Impacts of climate change and water resources management in the southern mediterranean countries. Water Prod J 1:51–72

    Google Scholar 

  • Gedeon S, Ioannou A, Balestrini R et al (2022) Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants 11:3082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiadou EC, Antoniou C, Majak I et al (2021) Tissue-specific elucidation of lycopene metabolism in commercial tomato fruit cultivars during ripening. Sci Hortic 284:110144

    CAS  Google Scholar 

  • Ghori N‑H, Ghori T, Hayat MQ et al (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16:1807–1828

    CAS  Google Scholar 

  • Godlewska K, Pacyga P, Michalak I et al (2021) Systematic investigation of the effects of seven plant extracts on the physiological parameters, yield, and nutritional quality of radish (Raphanus sativus var. sativus). Front Plant Sci 12:1105. https://doi.org/10.3389/FPLS.2021.651152/BIBTEX

    Article  Google Scholar 

  • Gryndler M, Hr H, Cajthaml T et al (2009) Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza 19:255–266. https://doi.org/10.1007/s00572-008-0217-y

    Article  PubMed  Google Scholar 

  • Hartman K, Tringe SG (2019) Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem J 476:2705–2724

    CAS  PubMed  Google Scholar 

  • Jorda H, Ahmed MA, Javaux M et al (2022) Field scale plant water relation of maize (Zea mays) under drought-impact of root hairs and soil texture. Plant Soil 478:59–84

    CAS  Google Scholar 

  • Kabir MSN, Ali M, Lee W‑H et al (2020) Physicochemical quality changes in tomatoes during delayed cooling and storage in a controlled chamber. Agriculture 10:196

    Google Scholar 

  • Khan N, Ali S, Zandi P et al (2020) Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak J Bot 52:355–363. https://doi.org/10.30848/PJB2020-2(24))

    Article  CAS  Google Scholar 

  • Kumar S, Sindhu SS, Kumar R (2021) Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci 3:100094

    PubMed  PubMed Central  Google Scholar 

  • Kumawat KC, Razdan N, Saharan K (2022) Rhizospheric microbiome: bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 254:126901

    CAS  PubMed  Google Scholar 

  • Kuromori T, Fujita M, Takahashi F et al (2022) Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. Plant J 109:342–358

    CAS  PubMed  Google Scholar 

  • Lal R (2015) World water resources and achieving water security. Agron J 107:1526–1532

    Google Scholar 

  • Li M, Liu Y, Shi Z, Zhang Y, Zhang X, Xu X et al (2020) Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE of spring wheat with different spike types. J Agron Crop Sci 206(4):432–443

    Google Scholar 

  • Lingua G, Bona E, Manassero P et al (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225. https://doi.org/10.3390/ijms140816207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes M, Sanches-Silva A, Castilho M et al (2021) Halophytes as source of bioactive phenolic compounds and their potential applications. Crit Rev Food Sci Nutr 63:1078–1101. https://doi.org/10.1080/10408398.2021.1959295

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Bell RW, Mattiello EM (2022) Nutrient acquisition with particular reference to subsoil constraints. In: Subsoil constraints for crop production. Springer, pp 289–321

    Google Scholar 

  • Meddich A (2023) Biostimulants for resilient agriculture—Improving plant tolerance to abiotic stress: a concise review. Gesunde Pflanz 75: 709–727. https://doi.org/10.1007/s10343-022-00784-2

  • Meddich A, Jaiti F, Bourzik W et al (2015) Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci Hortic 192:468–474. https://doi.org/10.1016/j.scienta.2015.06.024

    Article  Google Scholar 

  • Meena YK, Kaur N (2019) Towards an understanding of physiological and biochemical mechanisms of drought tolerance in plant. Annu Res Rev Biol 31:1–13

    Google Scholar 

  • Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F (2022) Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 23:663–679

    CAS  PubMed  Google Scholar 

  • Negi YK, Sajwan P, Uniyal S, Mishra AC (2021) Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertilizers. Sci Hortic 283:110038

    CAS  Google Scholar 

  • Ouhaddou R, Ben-Laouane R, Lahlali R et al (2022) Application of indigenous rhizospheric microorganisms and local compost as enhancers of lettuce growth, development, and salt stress tolerance. Microorganisms 10:1625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panno S, Davino S, Caruso AG et al (2021) A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin. Agronomy 11:2188

    Google Scholar 

  • Parmar M, Rajput H, Johri S (2021) Solanum lycopersicum, a reservoir of antioxidants. In: Antioxidant-based therapies for disease prevention and management. Apple Academic, pp 253–268

    Google Scholar 

  • Pérez-Rodriguez MM, Pontin M, Lipinski V et al (2020) Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions. J Soil Sci Plant Nutr 20:1614–1624. https://doi.org/10.1007/s42729-020-00233-x

    Article  CAS  Google Scholar 

  • Petit M, Le Grusse P (2019) Food and water management in the Mediterranean basin. In: The Oxford handbook of food, water and society, p 452

    Google Scholar 

  • Przybylska S (2020) Lycopene—A bioactive carotenoid offering multiple health benefits: a review. Int J Food Sci Technol 55:11–32

    CAS  Google Scholar 

  • Quiroga G, Erice G, Aroca R et al (2020) Radial water transport in arbuscular mycorrhizal maize plants under drought stress conditions is affected by indole-acetic acid (IAA) application. J Plant Physiol 246–247:153115. https://doi.org/10.1016/j.jplph.2020.153115

    Article  CAS  PubMed  Google Scholar 

  • Rajanna GA, Dhindwal AS (2019) Water dynamics, productivity and heat use efficiency responses in wheat (Triticum aestivum) to land configuration techniques and irrigation schedules. Indian J Agric Sci 89:912–919

    CAS  Google Scholar 

  • Riaz U, Murtaza G, Anum W et al (2021) Plant Growth-Promoting Rhizobacteria (PGPR) as biofertilizers and biopesticides. In: Microbiota and biofertilizers. Springer, pp 181–196

    Google Scholar 

  • Salehi B, Sharifi-Rad R, Sharopov F et al (2019) Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 62:201–208

    PubMed  Google Scholar 

  • Šamec D, Karalija E, Šola I et al (2021) The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 10:118

    PubMed  PubMed Central  Google Scholar 

  • Schmidt J, Fester T, Schulz E et al (2017) Effects of plant-symbiotic relationships on the living soil microbial community and microbial necromass in a long-term agro-ecosystem. Sci Total Environ 581–582:756–765. https://doi.org/10.1016/j.scitotenv.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  • Seleiman MF, Al-Suhaibani N, Ali N et al (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:1–25. https://doi.org/10.3390/plants10020259

    Article  CAS  Google Scholar 

  • Sérino S, Costagliola G, Gomez L (2019) Lyophilized tomato plant material: Validation of a reliable extraction method for the analysis of vitamin C. J Food Compost Anal 81:37–45

    Google Scholar 

  • Shi Y, Pu D, Zhou X, Zhang Y (2022) Recent progress in the study of taste characteristics and the nutrition and health properties of organic acids in foods. Foods 11:3408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Ghosh P, Kumar J, Kumar A (2019) Plant growth-promoting rhizobacteria (PGPRs): functions and benefits. In: Microbial interventions in agriculture and environment. Springer, pp 205–227

    Google Scholar 

  • Sinha S, Raghuwanshi R (2016) Synergistic effect of Arbuscular Mycorrhizal fungi and Mycorrhizal helper bacteria on physiological mechanism to tolerate drought in Eclipta prostrata (L.) L. J Pure Appl Microbiol 10:1117–1129

    CAS  Google Scholar 

  • Soares C, Rodrigues F, Sousa B et al (2021) Foliar application of sodium nitroprusside boosts Solanum lycopersicum L. tolerance to glyphosate by preventing redox disorders and stimulating herbicide detoxification pathways. Plants 10:1862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara E, Nikaido H (2014) Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother 58:7250–7257. https://doi.org/10.1128/AAC.03728-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahiri A, Meddich A, Raklami A et al (2022) Assessing the potential role of compost, PGPR, and AMF in improving tomato plant growth, yield, fruit quality, and water stress tolerance. J Soil Sci Plant Nutr 22:743–764. https://doi.org/10.1007/s42729-021-00684-w

    Article  CAS  Google Scholar 

  • Tardieu F (2022) Different avenues for progress apply to drought tolerance, water use efficiency and yield in dry areas. Curr Opin Biotechnol 73:128–134

    CAS  PubMed  Google Scholar 

  • Tigist M, Workneh TS, Woldetsadik K (2013) Effects of variety on the quality of tomato stored under ambient conditions. J Food Sci Technol 50:477–486

    CAS  PubMed  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM et al (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256. https://doi.org/10.1007/s00572-003-0223-z

    Article  PubMed  Google Scholar 

  • Wahab A, Abdi G, Saleem MH et al (2022) Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 11:1620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Vosátka M, Cai B et al (2019) The role of arbuscular mycorrhiza fungi in the decomposition of fresh residue and soil organic carbon: a mini-review. Soil Sci Soc Am J 83:511–517

    CAS  Google Scholar 

  • Won M, Koo S, Li H et al (2021) An ethacrynic acid-brominated BODIPY photosensitizer (EA-BPS) construct enhances the lethality of reactive oxygen species in hypoxic tumor-targeted photodynamic therapy. Angew Chem Int Ed 60:3196–3204

    CAS  Google Scholar 

  • Yaghoubi Khanghahi M, AbdElgawad H, Verbruggen E et al (2022) Biofertilisation with a consortium of growth-promoting bacterial strains improves the nutritional status of wheat grain under control, drought and salinity stress conditions. Physiol Plantarum 174:e13800. https://doi.org/10.1111/ppl.13800

    Article  CAS  Google Scholar 

  • Yang W, Gu S, Xin Y et al (2018) Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil. Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.00169

    Article  Google Scholar 

  • Zabermawi NM, Alsulaimany FAS, El-Saadony MT, El-Tarabily KA (2022) New eco-friendly trends to produce biofuel and bioenergy from microorganisms: An updated review. Saudi J Biol https://doi.org/10.1016/j.sjbs.2022.02.024

  • Zare L, Ronaghi A, Ghasemi R et al (2022) Alterations in glutathione, phytochelatin and micronutrients of corn plants exposed to cadmium stress at different time periods. Commun Soil Sci Plant Anal 54: 1185-1197.https://doi.org/10.1080/00103624.2022.2138909

  • Zhang Y, Miao Y, Chen M, Xu Q, Chen K, Yu Z et al (2009) Effects of water stress on the activity and gene expression of enzymes involved in primary metabolism in maize leaves. J Integr Plant Biol 51(8):741–749

    Google Scholar 

  • Zhou X, Huang W, Kong W et al (2017) Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data. Int J Appl Earth Obs Geoinf 57:24–35

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research and development project supported by CNRST in the framework of the Morocco-Tunisia project. Also, we thank Project MARBIO (Funded by the Ministry of Environment, Morocco) for its support.

Funding

This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement N° 862555 (project “Sus-Agri-CC”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelilah Meddich.

Ethics declarations

Conflict of interest

S. Lamaizi, A. Meddich, A. Boutasknit, L.E. Fels, Y. Ouhdouch and M. Hafidi declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamaizi, S., Meddich, A., Boutasknit, A. et al. Impacts of Olive-Mill-Wastewater-Compost Associated with Microorganisms On Yield and Fruits Quality of Tomato Under Water Stress. Gesunde Pflanzen 75, 2477–2490 (2023). https://doi.org/10.1007/s10343-023-00923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00923-3

Keywords

Navigation