Skip to main content

Advertisement

Log in

Fungal Root Rots of Sugar Beets: A Review of Common Causal Agents and Management Strategies

  • Review Article / Übersichtsbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Sugar beet is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet root rot, caused by fungal pathogens, significantly reduces yield, juice purity, and sugar concentration. Studies have revealed that sugar beet root rot (SBRR) is mainly caused by soil fungi like Rhizoctonia solani, Sclerotium rolfsii, Fusarium spp., Macrophomina phaseolina, Aphanomyces cochlioides and Phytophthora spp. Given the wide host spectrum, the great influence by environmental conditions, and the resistant structures of fungi causing SBRR, the management of this disease which begins with invisible symptoms remains a difficult task. Therefore, further studies are needed to correctly identify the causative agents and to understand more about conditions and factors favoring disease incidence. This will greatly contribute to designing and adopting appropriate control methods to manage this economically important disease. Hence, this review concentrates on key symptoms and current advances in morphological and molecular means used for the precise designation of the fungus associated with SBRR, and control procedures designed to manage this disease in recent years. This work also exposes the new alternative approaches exploited to manage root rot in the context of sustainable sugar beet production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aallam Y, Maliki BE, Dhiba D, Lemriss S, Souiri A, Haddioui A, Tarkka M, Hamdali H (2021) Multiple potential plant growth promotion activities of endemic Streptomyces spp. from moroccan sugar beet fields with their inhibitory activities against Fusarium spp. Microorganisms 9:1429. https://doi.org/10.3390/microorganisms9071429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aallam Y, Dhiba D, El Rasafi T, Lemriss S, Haddioui A, Tarkka M, Hamdali H (2022) Growth promotion and protection against root rot of sugar beet (Beta vulgaris L.) by two rock phosphate and potassium solubilizing Streptomyces spp. under greenhouse conditions. Plant Soil 472:407–420

    Article  CAS  Google Scholar 

  • Abada KA (1994) Fungi causing damping-off and root-rot on sugar-beet and their biological control with Trichoderma harzianum. Agric Ecosyst Environ 51:333–337

    Article  Google Scholar 

  • Abd Ellatif S, Gharieb MM, El-Moghazy SM, El-Yazied MNA, Bakry AM (2019) New approach to control sclerotium rolfsii induced sugar beet root rots disease by trichoderma with improved sucrose contents. J Pure Appl Microbiol 13:1595–1605

    Article  CAS  Google Scholar 

  • Abd-Elgawad M, El-Mougy N, El-Gamal N, Abdel-Kader M, Mohamed M (2010) Protective treatments against soilborne pathogens in citrus orchards. J Plant Prot Res. https://doi.org/10.2478/v10045-010-0079-0

    Article  Google Scholar 

  • Abdel-Azeem AM, Abdel-Azeem MA, Darwish AG, Nafady NA, Ibrahim NA (2019) Fusarium: biodiversity, ecological significances, and industrial applications. In: Recent advancement in white biotechnology through fungi. Springer, Berlin Heidelberg, pp 201–261

    Chapter  Google Scholar 

  • Abdelghany MMA, Kurikawa M, Watanabe M, Matsui H, Yamamoto M, Ichinose Y, Toyoda K, Kouzai Y, Noutoshi Y (2022) Surveillance of pathogenicity of Rhizoctonia solani Japanese isolates with varied anastomosis groups and subgroups on arabidopsis thaliana. Life 12:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdollahi M, Ommati F, Zaker M (2012) The in vitro efficacy of trichoderma isolates against ptyhium aphanidermatum, the causal agent of sugar beet root rot. Journal of Research in Agricultural Science 8:79–87

    Google Scholar 

  • Adesemoye A, Eskalen A, Faber B, Bender G, O’connell N, Kallsen C, Shea T (2011) Current knowledge on Fusarium dry rot of citrus. Citrograph 2:29–33

    Google Scholar 

  • Aeron A, Khare E, Jha CK, Meena VS, Aziz SMA, Islam MT, Kim K, Meena SK, Pattanayak A, Rajashekara H (2020) Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. Arch Microbiol 202:665–676

    Article  CAS  PubMed  Google Scholar 

  • Agisha VN, Kumar A, Eapen SJ, Sheoran N, Suseelabhai R (2019) Broad-spectrum antimicrobial activity of volatile organic compounds from endophytic Pseudomonas putida BP25 against diverse plant pathogens. Biocontrol Sci Technol 29:1069–1089

    Article  Google Scholar 

  • Aguayo J, Mostert D, Fourrier-Jeandel C, Cerf-Wendling I, Hostachy B, Viljoen A, Ioos R (2017) Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. sp. cubense race 4. PLoS ONE 12:e171767

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SØ (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol 9:2992

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540

    Article  CAS  PubMed  Google Scholar 

  • Akbar A, Hussain S, Ullah K, Fahim M, Ali GS (2018) Detection, virulence and genetic diversity of Fusarium species infecting tomato in Northern Pakistan. PLoS ONE 13:e203613

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Ani LKT (2018) Trichoderma: beneficial role in sustainable agriculture by plant disease management. In: Plant microbiome: stress response. Springer, Berlin Heidelberg, pp 105–126

    Chapter  Google Scholar 

  • Al-Hatmi AM, Meis JF, de Hoog GS (2016) Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathog 12:e1005464

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Sadi AM, Al-Ghaithi AG, Al-Fahdi N, Al-Yahyai R (2014) Characterization and pathogenicity of fungal pathogens associated with root diseases of citrus in Oman. Int J Agric Biol 16(2):371 (Berlin Heidelberg)

    CAS  Google Scholar 

  • Al-Sadi AM, Al-Masoodi RS, Al-Ismaili M, Al-Mahmooli IH (2015) Population structure and development of resistance to hymexazol among Fusarium solani populations from date palm, citrus and cucumber. J Phytopathol 163:947–955

    Article  CAS  Google Scholar 

  • Almquist C, Persson L, Olsson AA, Sundström J, Jonsson A (2016) Disease risk assessment of sugar beet root rot using quantitative real-time PCR analysis of Aphanomyces cochlioides in naturally infested soil samples. Eur J Plant Pathol 145:731–742

    Article  CAS  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Alwahshi KJ, Saeed EE, Sham A, Alblooshi AA, Alblooshi MM, El-Tarabily KA, AbuQamar SF (2019) Molecular identification and disease management of date palm sudden decline syndrome in the United Arab Emirates. Int J Mol Sci 20:923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly MH, Manal YH (2009) Vesicular-arbuscular mycorrhiza and Trichoderma virdi as deterrents against soil-borne root rot disease of sugar beet. Sugar Tech 11:387–391

    Article  Google Scholar 

  • Amatulli MT, Spadaro D, Gullino ML, Garibaldi A (2012) Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. Eur J Plant Pathol 134:401–408

    Article  CAS  Google Scholar 

  • Anees M, Edel-Hermann V, Steinberg C (2010) Build up of patches caused by Rhizoctonia solani. Soil Biol Biochem 42:1661–1672

    Article  CAS  Google Scholar 

  • Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, Li S, Haesebrouck F, Van Immerseel F, Croubels S (2014) The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 6:430–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabiat S, Khan MF (2016) Sensitivity of Rhizoctonia solani AG-2‑2 from Sugar Beet to Fungicides. Plant Dis 100:2427–2433. https://doi.org/10.1094/PDIS-04-16-0525-RE

    Article  CAS  PubMed  Google Scholar 

  • Arabiat S, Liu Y, Khan MF (2021) Sensitivity of Aphanomyces cochlioides from Sugar Beet to selected Fungicides. J Sugar Beet Res 57:40–50

    Article  Google Scholar 

  • Arif M, Chawla S, Zaidi MW, Rayar JK, Variar M, Singh US (2012) Development of specific primers for genus Fusarium and F. solani using rDNA sub-unit and transcription elongation factor (TEF-1α) gene. Afr J Biotechnol 11:444–447

    CAS  Google Scholar 

  • Arthur GD, Stirk WA, Novák O, Hekera P, van Staden J (2007) Occurrence of nutrients and plant hormones (cytokinins and IAA) in the water fern Salvinia molesta during growth and composting. Environ Exp Bot 61:137–144

    Article  CAS  Google Scholar 

  • Asgharipour MR, Mondani F, Riahinia S (2012) Energy use efficiency and economic analysis of sugar beet production system in Iran: a case study in Khorasan Razavi province. Energy 44:1078–1084

    Article  Google Scholar 

  • Asim M, Raza W, Iqbal Z, Ahmad S, Ghazanfar MU, Raza M, Adnan M (2018) Evaluation of different fungicides against Phytophthora spp. associated with citrus decline: a review. JOJ Hortic Agric 2:1–4

    Google Scholar 

  • Avan M, Aksoy C, Katırcıoğlu Z, Demirci F, Kaya R (2019) First report of Aphanomyces cochlioides causing root rot of sugar beet in Turkey. New Dis Rep 39:22–22

    Article  Google Scholar 

  • Avan M, Palacioğlu G, Ertek TS, Katircioğlu YZ, Bayraktar H, Kaya R, Maden S (2020) Sugar beet root rot caused by oomycetous pathogensin Turkeyand their control by seed treatment. Turk J Agric For 44:631–641

    Article  CAS  Google Scholar 

  • Avenot HF, Michailides TJ (2010) Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot 29:643–651

    Article  CAS  Google Scholar 

  • Ayed F, Jabnoun-Khiareddine H, Aydi-Ben-Abdallah R, Daami-Remadi M (2018) Effects of pH and aeration on Sclerotium rolfsii sacc. mycelial growth, sclerotial production and germination. Int J Phytopathol 7:123–129

    Article  Google Scholar 

  • Babai-Ahary A, Abrinnia M, Heravan IM (2004) Identification and pathogenicity of Pythium species causing damping-off in sugarbeet in northwest Iran. Australas Plant Pathol 33:343–347

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Balba H (2007) Review of strobilurin fungicide chemicals. J Environ Sci Health Part B 42:441–451

    Article  CAS  Google Scholar 

  • Baldantoni D, Morelli R, Bellino A, Prati MV, Alfani A, De Nicola F (2017) Anthracene and benzo (a) pyrene degradation in soil is favoured by compost amendment: perspectives for a bioremediation approach. J Hazard Mater 339:395–400

    Article  CAS  PubMed  Google Scholar 

  • Basallote-Ureba MJ, Vela-Delgado MD, Capote N, Melero-Vara JM, López-Herrera CJ, Prados-Ligero AM, Talavera-Rubia MF (2016) Control of Fusarium wilt of carnation using organic amendments combined with soil solarization, and report of associated Fusarium species in southern Spain. Crop Prot 89:184–192

    Article  Google Scholar 

  • Behn A, Ladewig E, Manthey R, Varrelmann M (2012) Resistance testing of sugar beet varieties against Rhizoctonia solani. Sugar Ind 137:49–57

    Article  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  • Bernal-Vicente A, Ros M, Tittarelli F, Intrigliolo F, Pascual JA (2008) Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects. Bioresour Technol 99:8722–8728

    Article  CAS  PubMed  Google Scholar 

  • Bertagnolli BL, Dal Soglio FK, Sinclair JB (1996) Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megateriumstrain B153-2‑2 and Trichoderma harzianumisolate Th008. I. Possible correlations with inhibition of growth and biocontrol. Physiol Mol Plant Pathol 48:145–160

    Article  CAS  Google Scholar 

  • Bhuiyan MZR, Lakshman DK, Mosher P, Khan MF (2022) Identification of Rhizopus arrhizus (Fisher) causing root rot in sugar beet in North Dakota and Minnesota, USA. J Plant Pathol 104:357–362

    Article  Google Scholar 

  • Bidima MG, Chtaina N, Ezzahiri B, El Guilli M (2021) Evaluation of the antagonistic potential of bacterial strains isolated from moroccan soils for the biological control of Sclerotium rolfsii Sacc. International Journal of Food Science and Agriculture 5:608–616

    Article  Google Scholar 

  • Blaya J, Lloret E, Ros M, Pascual JA (2015) Identification of predictor parameters to determine agro-industrial compost suppressiveness against Fusarium oxysporum and Phytophthora capsici diseases in muskmelon and pepper seedlings. J Sci Food Agric 95:1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Blazier SR (2004) Characterization of Rhizoctonia solani isolates associated with patch diseases on turfgrass. In: Proceedings of the Oklahoma academy of science, pp 41–51

    Google Scholar 

  • Bodah ET (2017) Root rot diseases in plants: a review of common causal agents and management strategies. Agri Res Tech Open Access J 5:555661

    Google Scholar 

  • Bogale M, Wingfield BD, Wingfield MJ, Steenkamp ET (2007) Species-specific primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum. FEMS Microbiol Lett 271:27–32

    Article  CAS  PubMed  Google Scholar 

  • Boine B, Renner A‑C, Zellner M, Nechwatal J (2014) Quantitative methods for assessment of the impact of different crops on the inoculum density of Rhizoctonia solani AG2-2IIIB in soil. Eur J Plant Pathol 140:745–756

    Article  Google Scholar 

  • Bolton MD, Panella L, Campbell L, Khan MF (2010) Temperature, moisture, and fungicide effects in managing Rhizoctonia root and crown rot of sugar beet. Phytopathology 100:689–697

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Bonanomi G, Ippolito F, Scala F (2015) A “black” future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. J Plant Pathol 97:223–234

    Google Scholar 

  • Bonilla N, Gutiérrez-Barranquero JA, de Vicente A, Cazorla FM (2012) Enhancing soil quality and plant health through suppressive organic amendments. Diversity 4:475–491

    Article  Google Scholar 

  • Botkin JR, Hirsch CD, Martin FN, Chanda AK (2022) DNA-based detection of Aphanomyces cochlioides in soil and sugar beet plants. bioRxiv. https://doi.org/10.1101/2022.04.25.489453

    Book  Google Scholar 

  • Bouasria A, Rahimi A, El Mjiri I, Namr KI, Ettachfini EM, Bounif M (2021) Use of remote sensing data to estimate sugar beet crop yield in the Doukkala irrigated perimeter. In: 2021 Third International Sustainability and Resilience Conference: Climate Change. IEEE, pp 504–507

    Chapter  Google Scholar 

  • Boudra H, Rouillé B, Lyan B, Morgavi DP (2015) Presence of mycotoxins in sugar beet pulp silage collected in France. Anim Feed Sci Technol 205:131–135

    Article  CAS  Google Scholar 

  • Brent KJ, Hollomon DW (2007) Fungicide resistance in crop pathogens: how can it be managed. FRAC Monograph No. 1. Fungic Resist Action Comm Bruss Belg

    Google Scholar 

  • Bretzel P von, Stanghellini ME, Kronland WC (1988) Epidemiology of Pythium root rot of mature sugar beets. Plant Dis 72:707–709

    Article  Google Scholar 

  • Brummer EC, Barber WT, Collier SM, Cox TS, Johnson R, Murray SC, Olsen RT, Pratt RC, Thro AM (2011) Plant breeding for harmony between agriculture and the environment. Front Ecol Environ 9:561–568

    Article  Google Scholar 

  • Bubici G, Kaushal M, Prigigallo MI, Gómez-Lama Cabanás C, Mercado-Blanco J (2019) Biological control agents against Fusarium wilt of banana. Front Microbiol 10:616

    Article  PubMed  PubMed Central  Google Scholar 

  • Buddemeyer J, Märländer B (2004) Integrated control of crown rot in sugar beet roots (Rhizoctonia solani Kühn)—the impact of tillage factors, crop rotation, and selection of varieties, including maize]. Zuckerindustrie 129:799–809

    Google Scholar 

  • Budge GE, Shaw MW, Colyer A, Pietravalle S, Boonham N (2009) Molecular tools to investigate Rhizoctonia solani distribution in soil. Plant Pathol 58:1071–1080

    Article  CAS  Google Scholar 

  • Buhre C, Kluth C, Bürcky K, Märländer B, Varrelmann M (2009) Integrated control of root and crown rot in sugar beet: combined effects of cultivar, crop rotation, and soil tillage. Plant Dis 93:155–161. https://doi.org/10.1094/PDIS-93-2-0155

    Article  PubMed  Google Scholar 

  • Büttner G, Führer Ithurrart ME, Buddemeyer J (2002) Späte Rübenfäule Rhizoctonia solani: Verbreitung, wirtschaftliche Bedeutung und integrierte Bekämpfungskonzepte. Zuckerindustrie 127:856–866

    Google Scholar 

  • Buttner G, Pfahler B, Marlander B (2004) Greenhouse and field techniques for testing sugar beet for resistance to Rhizoctonia root and crown rot. Plant Breed 123:158–166. https://doi.org/10.1046/j.1439-0523.2003.00967.x

    Article  Google Scholar 

  • Cao S, Yang N, Zhao C, Liu J, Han C, Wu X (2018) Diversity of Fusarium species associated with root rot of sugar beet in China. J Gen Plant Pathol 84:321–329. https://doi.org/10.1007/s10327-018-0792-5

    Article  CAS  Google Scholar 

  • Carling DE, Kuninaga S, Brainard KA (2002) Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group‑2 (AG-2) and AG-BI. Phytopathology 92:43–50. https://doi.org/10.1094/PHYTO.2002.92.1.43

    Article  CAS  PubMed  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  Google Scholar 

  • Chanda AK, Brantner JR, Metzger M, Bloomquist M, Mettler D (2019) Integrated management of rhizoctonia on sugarbeet with resistant varieties, at-planting treatments, and postemergence fungicides. Sugarbeet Res Ext Rep 154:1–10

    Google Scholar 

  • Chandrashekara C, Bhatt JC, Kumar R, Chandrashekara KN (2012) Suppressive soils in plant disease management. In: Eco-Friendly Innov Approaches Plant Dis Manag Ed Singh New Delhi Int Book Distrib, pp 241–256

    Google Scholar 

  • Chehri K, Salleh B, Zakaria L (2015) Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microb Ecol 69:457–471

    Article  PubMed  Google Scholar 

  • Chenaoui M, Amar M, Benkhemmar O, Aissami AE, Arahou M, Rhazi L (2017) Isolation and characterization of fungi from sugar beet roots samples collected from Morocco. Journal of Materials and Environmental Sciences 8:3962–3967

    CAS  Google Scholar 

  • Choluj D, Moliszewska EB (2012) The influence of Aphanomyces cochlioides on selected physiological processes in sugar beet leaves and yield parameters. Eur J Plant Pathol 132:59–70

    Article  Google Scholar 

  • Christ DS, Märländer B, Varrelmann M (2011a) Characterization and mycotoxigenic potential of Fusarium species in freshly harvested and stored sugar beet in Europe. Phytopathology 101:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Christ DS, Märländer B, Varrelmann M (2011b) Characterization and mycotoxigenic potential of Fusarium species in freshly harvested and stored sugar beet in Europe. Phytopathology 101:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Dam NM van, Weinhold A, Garbeva P (2016) Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. In: Blande J, Glinwood R (eds) Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-33498-1_8

    Chapter  Google Scholar 

  • Daryanto S, Fu B, Wang L, Jacinthe P‑A, Zhao W (2018) Quantitative synthesis on the ecosystem services of cover crops. Earth Sci Rev 185:357–373

    Article  CAS  Google Scholar 

  • Das S, Pattanayak S (2022) Soil-borne pathogen-mediated root rot diseases of sugar beet and their management. In: Sugar beet cultivation, management and processing. Springer, Berlin Heidelberg, pp 591–605

    Chapter  Google Scholar 

  • Das IK, Rakshit S, Patil JV (2015) Assessment of artificial inoculation methods for development of sorghum pokkah boeng caused by Fusarium subglutinans. Crop Prot 77:94–101

    Article  Google Scholar 

  • Das K, Datta K, Sarkar SN, Datta SK (2021) Expression of antimicrobial peptide snakin‑1 confers effective protection in rice against sheath blight pathogen, Rhizoctonia solani. Plant Biotechnol Rep 15:39–54

    Article  CAS  Google Scholar 

  • De Lucchi C, Stevanato P, Hanson L, McGrath M, Panella L, De Biaggi M, Broccanello C, Bertaggia M, Sella L, Concheri G (2017) Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet. Euphytica 213:71. https://doi.org/10.1007/s10681-017-1859-7

    Article  CAS  Google Scholar 

  • Djébali N, Elkahoui S, Taamalli W, Hessini K, Tarhouni B, Mrabet M (2014) Tunisian Rhizoctonia solani AG3 strains affect potato shoot macronutrients content, infect faba bean plants and show in vitro resistance to azoxystrobin. Australas Plant Pathol 43:347–358

    Article  Google Scholar 

  • Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549

    Article  CAS  PubMed  Google Scholar 

  • Duygu AK, Mehmet MÖ, Fatma G, Sait G, Nesim D (2022) Distribution of macro- and micro nutrient elements and heavy metals in the sugar beet (Beta vulgaris var. saccharifera L.) plant parts. JAPT 28:54–61

    Google Scholar 

  • El Titi A, Landes H (2020) Integrated farming system of Lautenbach: a practical contribution toward sustainable agriculture in Europe. In: Sustainable agricultural systems. CRC Press, Boca Raton, pp 265–286

    Chapter  Google Scholar 

  • El-Kazzaz MK, Badr MM, El-Zahaby HM, Gouda MI (2002) Biological control of seedling damping-off and root rot of sugar beet plants. Plant Prot Sci Prague 38:645–647

    Article  Google Scholar 

  • El-Mohamedy RSR (2009) Efficiency of different application methods of biocontrol agents and biocides in control of Fusarium root rot on some citrus rootstocks. Arch Phytopathol Plant Prot 42:819–828

    Article  CAS  Google Scholar 

  • El-Tarabily KA (2004) Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75. https://doi.org/10.1046/j.1365-2672.2003.02043.x

    Article  CAS  PubMed  Google Scholar 

  • Eliwa MA, Aly MME‑S, Saber SM (2021) Control of root rot disease of sugar beet using certain antioxidants and fungicides. J Phytopathol Pest Manag 8:1–14

    Google Scholar 

  • Ellatif SA, Gharieb MM, El-Moghazy SM, El-Yazied MNA, Bakry AM (2019) New approach to control Sclerotium rolfsii induced sugar beet root rots disease by Trichoderma with improved sucrose contents. J Pure Appl Microbiol 13:1595–1604

    Article  Google Scholar 

  • Engelkes CA, Windels CE (1996) Susceptibility of sugar beet and beans to Rhizoctonia solani AG-2‑2 IIIB and AG-2‑2 IV. Plant Dis 80:1413–1417

    Article  Google Scholar 

  • Ennouari A, Sanchis V, Marín S, Rahouti M, Zinedine A (2013a) Occurrence of deoxynivalenol in durum wheat from Morocco. Food Control 32:115–118

    Article  CAS  Google Scholar 

  • Ennouari A, Sanchis V, Marín S, Rahouti M, Zinedine A (2013b) Occurrence of deoxynivalenol in durum wheat from Morocco. Food Control 32:115–118

    Article  CAS  Google Scholar 

  • Errakhi R, Lebrihi A, Barakate M (2009) In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii : a causal agent of root rot on sugar beet ( Beta vulgaris L.). J Appl Microbiol 107:672–681. https://doi.org/10.1111/j.1365-2672.2009.04232.x

    Article  CAS  PubMed  Google Scholar 

  • Ezrari S, Mhidra O, Radouane N, Tahiri A, Polizzi G, Lazraq A, Lahlali R (2021) Potential role of rhizobacteria isolated from citrus rhizosphere for biological control of citrus dry root rot. Plants 10:872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezrari S, Radouane N, Tahiri A, El Housni Z, Mokrini F, Özer G, Lazraq A, Belabess Z, Amiri S, Lahlali R (2022) Dry root rot disease, an emerging threat to citrus industry worldwide under climate change: a review. Physiol Mol Plant Pathol 117:101753

    Article  CAS  Google Scholar 

  • Fageria NK (2012) Role of soil organic matter in maintaining sustainability of cropping systems. Commun Soil Sci Plant Anal 43:2063–2113

    Article  CAS  Google Scholar 

  • Farhaoui A, Adadi A, Tahiri A, El Alami N, Khayi S, Mentag R, Ezrari S, Nabil R, Mokrini F, Belabess Z, Lahlali R (2022a) Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Sclerotiorum rolfsii diseases on sugar beet (Beta vulgaris L.). Physiol Mol Plant Pathol. https://doi.org/10.1016/j.pmpp.2022.101829

    Article  Google Scholar 

  • Farhaoui A, Tahiri A, Ezrari S, Radouane N, Khadiri M, El Alami N, Belabess Z, Mohammed B, Amiri S, Lahlali R (2022b) Identification, pathogenicity, fungicide sensitivity and biological control of Rhizoctonia solani associated with damping-off disease of sugar beet in Morocco. Preprint from Research Square. https://doi.org/10.21203/rs.3.rs-1517415/v1

    Article  Google Scholar 

  • Farooq MA, Iqbal U, Iqbal SM, Afzal R, Rasool A (2010) In-vitro evaluation of different plant extracts on mycelial growth of Sclerotium rolfsii the cause of root rot of sugar beet. Mycopath 8:81–84

    Google Scholar 

  • Faruk MI (2019) Management of barley seedling disease caused by Sclerotium rolfsii through soil amendment with tricho-compost. Eur J Biophys 7:1–7

    Article  Google Scholar 

  • Fassihiani A, Nedaeinia R (2008) Characterization of Iranian Pectobacterium carotovorum Strains from Sugar Beet by Phenotypic Tests and Whole-cell Proteins Profile. J Phytopathol 156:281–286

    Article  CAS  Google Scholar 

  • Foley RC, Kidd BN, Hane JK, Anderson JP, Singh KB (2016) Reactive oxygen species play a role in the infection of the necrotrophic fungi, Rhizoctonia solani in wheat. PLoS ONE 11:e152548

    Article  PubMed  PubMed Central  Google Scholar 

  • Foroud NA, Chatterton S, Reid LM, Turkington TK, Tittlemier SA, Gräfenhan T (2014) Fusarium diseases of Canadian grain crops: impact and disease management strategies. In: Future challenges in crop protection against fungal pathogens. Springer, Berlin Heidelberg, pp 267–316

    Chapter  Google Scholar 

  • Franceschi VR, Loewus FA (2020) Oxalate biosynthesis and function in plants and fungi. In: Calcium oxalate in biological systems. CRC press, Boca Raton, pp 113–130

    Google Scholar 

  • Garcia Gonzalez JF (2021) Investigating Management Alternatives for Southern Blight on Vegetables in the mid-Atlantic United States. PhD Thesis, Virginia Tech

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glover JD, Cox CM, Reganold JP (2007) Future farming: a return to roots? Sci Am 297:82–89

    Article  PubMed  Google Scholar 

  • Goswami D, Vaghela H, Parmar S, Dhandhukia P, Thakker JN (2013) Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. J Plant Interact 8:281–290

    Article  CAS  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H‑S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Gowtham HG, Hariprasad P, Nayak SC, Niranjana SR (2016) Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato. Rhizosphere 2:72–74

    Article  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    CAS  Google Scholar 

  • Gupta GK, Sharma SK, Ramteke R (2012) Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). J Phytopathol 160:167–180

    Article  Google Scholar 

  • Haikel Y, Voegel JC, Frank RM (1986) Fluoride content of water, dust, soils and cereals in the endemic dental fluorosis area of Khouribga (Morocco). Arch Oral Biol 31:279–286

    Article  CAS  PubMed  Google Scholar 

  • Håkansson I, Henriksson L, Blomquist JE (2006) Soil tillage and crop establishment. Sugar Beet, Blackwell Publishing, p 114–133

  • Hakk PC, Carlson AL, Khan MF, Peters TJ, Boetel MA (2015) Survey of fungicide use in sugarbeet in Minnesota and eastern North Dakota in 2014. Sugar Beet Res Ext Rep 45:119–123

    Google Scholar 

  • Hammam MM, El-Mohamedy RS, Abd-El-Kareem F, Abd-Elgawad MM (2016) Evaluation of soil amended with bio-agents and compost alone or in combination for controlling citrus nematode Tylenchulus semipenetrans and Fusarium dry root rot on Volkamer lime under greenhouse conditions. Int J Chem Tech Res 9:86–96

    CAS  Google Scholar 

  • Hanson LE (2010) Interaction of Rhizoctonia solani and Rhizopus stolonifer causing root rot of sugar beet. Plant Dis 94:504–509

    Article  CAS  PubMed  Google Scholar 

  • Hanson LE, Hill AL (2004) Fusarium species causing Fusarium yellows of sugarbeet. Journal of Sugar Beet Research 41:164–178

    Article  Google Scholar 

  • Hanson L, De Lucchi C, Stevanato P, McGrath M, Panella L, Sella L, De Biaggi M, Concheri G (2018) Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. betae. Eur J Plant Pathol 150:589–593

    Article  CAS  Google Scholar 

  • Hanson LE, Hill AL, Jacobsen BJ, Panella L (2009) Response of sugarbeet lines to isolates of Fusarium oxysporum f. sp. betae from the United States. Journal of Sugar Beet Research 46:11–26

    Article  Google Scholar 

  • Haque ME (2020) Developing a New Inoculation Method, and Evaluating the Potential Biological Control of Rhizoctonia solani by Penicillium Pinophilum on Sugar Beet. PhD Thesis, North Dakota State University

  • Haque ME, Parvin MS (2020) First report of Clonostachys rosea causing root rot of Beta vulgaris in North Dakota, USA. New Dis Rep 42:21–21

    Article  Google Scholar 

  • Harveson RM (2006) Identifying and distinguishing seedling and root rot diseases of sugar beets. Plant Health Prog 7:39. https://doi.org/10.1094/PHP-2006-0915-01-DG

    Article  Google Scholar 

  • Harveson RM, Hanson LE, Hein GL (2009) Compendium of beet diseases and pests. American Phytopathological Society (APS Press)

    Book  Google Scholar 

  • Hassen AI, Bopape FL, Sanger LK (2016) Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In: Microbial inoculants in sustainable agricultural productivity. Springer, Berlin Heidelberg, pp 23–36

    Chapter  Google Scholar 

  • Hawaladar S, Nandan M, Vinaykumar HD, Hadimani RH, Hiremath S, Venkataravanappa V, Basha CR, Reddy CN (2022) Morphological and molecular characterization of Sclerotium rolfsii associated with stem rot disease of groundnut (Arachis hypogaea L.). Ind Phytopathol 75:25–36

    Article  Google Scholar 

  • Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94:135–155

    Article  PubMed  Google Scholar 

  • Heck DW, Ghini R, Bettiol W (2019) Deciphering the suppressiveness of banana Fusarium wilt with organic residues. Appl Soil Ecol 138:47–60

    Article  Google Scholar 

  • Hill AL, Reeves PA, Larson RL, Fenwick AL, Hanson LE, Panella L (2011) Genetic variability among isolates of Fusarium oxysporum from sugar beet. Plant Pathol 60:496–505

    Article  Google Scholar 

  • Hossain S, Bergkvist G, Berglund K, Mårtensson A, Persson P (2012) Aphanomyces pea root rot disease and control with special reference to impact of Brassicaceae cover crops. Acta Agric Scand Sect B Soil Plant Sci 62:477–487

    CAS  Google Scholar 

  • Hosseini SA, Réthoré E, Pluchon S, Ali N, Billiot B, Yvin J‑C (2019) Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. Int J Mol Sci 20:3777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inokuti EM, Thiery-Lanfranchi D, Edel-Hermann V, Gautheron N, Fayolle L, Michereff SJ, Steinberg C (2019) Genetic and pathogenic variability of Rhizoctonia solani causing crown and root rot on sugar beet in France. J Plant Pathol 101:907–916

    Article  Google Scholar 

  • Iqbal MA, Saleem AM (2015) Sugar beet potential to beat sugarcane as a sugar crop in Pakistan. Am Eurasian J Agric Environ Sci 15:36–44

    Google Scholar 

  • Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QMM, Hossain MZ, Ahmed B, Rahim S, Rahman MS (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. Bmc Genomics 13:493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ithurrart MEF, Büttner G, Petersen J (2004) Rhizoctonia root rot in sugar beet (Beta vulgaris ssp. altissima)-Epidemiological aspects in relation to maize (Zea mays) as a host plant. Z Pflanzenkrankh Pflanzenschutz J 111:302–312

    Google Scholar 

  • Jacobsen BJ (1997) Role of plant pathology in integrated pest management. Annu Rev Phytopathol 35:373–391

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen BJ (2006) Root rot diseases of sugar beet. Zb Matice Srp Za Prir Nauke 110:9–19

    Article  Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  • Jiménez Díaz RM, Jiménez-Gasco MM del (2011) Integrated management of Fusarium wilt diseases. 177–215

  • Jiménez-Fernández D, Montes-Borrego M, Navas-Cortés JA, Jiménez-Díaz RM, Landa BB (2010) Identification and quantification of Fusarium oxysporum in planta and soil by means of an improved specific and quantitative PCR assay. Appl Soil Ecol 46:372–382

    Article  Google Scholar 

  • Judelson HS (2007) Sexual reproduction in plant pathogenic oomycetes: biology and impact on disease. In: Sex in Fungi Mol Determ Evol Implic. 445–458. https://doi.org/10.1128/9781555815837.ch27

  • Jurado M, Vázquez C, Patiño B, González-Jaén MT (2005) PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides. Syst Appl Microbiol 28:562–568

    Article  CAS  PubMed  Google Scholar 

  • Kakueinezhad M, Taheri P, Mahmoudi SB, Tarighi S (2018) Resistance assessment and biochemical responses of sugar beet lines against Pythium aphanidermatum, causing root rot. Eur J Plant Pathol 151:307–319. https://doi.org/10.1007/s10658-017-1373-8

    Article  CAS  Google Scholar 

  • Karadimos DA, Karaoglanidis GS (2006) Survey of root rot diseases of sugar beet in Central Greece. Zb Matice Srp Za Prir Nauke 110:129–131

    Article  Google Scholar 

  • Karadimos DA, Karaoglanidis GS, Klonari K (2002) First report of charcoal rot of sugar beet caused by Macrophomina phaseolina in Greece. Plant Dis 86:1051–1051

    Article  CAS  PubMed  Google Scholar 

  • Karakotov SD, Arshava NV, Bashkatova MN, Zheltova EV (2020) Morphological and molecular identification of Macrophomina phaseolina in the pool of pathogens of sugar beet (Beta vulgaris) root rot: Screening of fungicides for its control. Res Crop 21:798–803

    Google Scholar 

  • Karaoglanidis GS, Karadimos DA, Klonari K (2000) First Report of Phytophthora Root Rot of Sugar Beet, Caused by Phytophthora cryptogea. Greece Plant Dis 84:593–593. https://doi.org/10.1094/PDIS.2000.84.5.593B

    Article  CAS  PubMed  Google Scholar 

  • Karimi E, Sadeghi A, Abbaszadeh Dahaji P, Dalvand Y, Omidvari M, Kakuei Nezhad M (2012) Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol Sci Technol 22:333–349

    Article  Google Scholar 

  • Kator L, Hosea ZY, Oche OD (2015) Sclerotium rolifsii: causative organism of southern blight, stem rot, white mold and sclerotia rot disease. Ann Biol Res 6:78–89

    CAS  Google Scholar 

  • Khan MF (2018) Sugarbeet production guide. NDSU Extension Service

    Google Scholar 

  • Khan AF, Liu Y, Khan MF (2017) Efficacy and safety of generic azoxystrobin at controlling Rhizoctonia solani in sugar beet. Crop Prot 93:77–81

    Article  CAS  Google Scholar 

  • Khan MFR, Haque ME, Hakk P, Bhuiyan MZR, Liu Y, Johnson J, Peters D (2021) First report of Pythium ultimum causing damping-off of sugar beet (Beta vulgaris) in Montana, USA. Plant Dis 105:1229–1229

    Article  Google Scholar 

  • Khan SM, Ali S, Nawaz A, Bukhari SAH, Ejaz S, Ahmad S (2019) Integrated pest and disease management for better agronomic crop production. In: Manag Pract. Agron Crops, vol 2, pp 385–428

    Google Scholar 

  • Khanzada MA, Tanveer M, Maitlo SA, Hajano J, Ujjan AA, Syed RN, Lodhi AM, Rajput AQ (2016) Comparative efficacy of chemical fungicides, plant extracts and bio-control agents against Fusarium solani under laboratory conditions. Pak J Phytopathol 28:133–139

    Google Scholar 

  • Khattabi N, Ezzahiri B, Louali L, Oihabi A (2001) Effect of fungicides and Trichoderma harzianum on sclerotia of Sclerotium rolfsii. Phytopathol Mediterr 40:143–148

    CAS  Google Scholar 

  • Khdiar MY, Burgess TI, Barber PA, Hardy GESJ (2022) Calcium chelate is as effective as phosphite in controlling Phytophthora root rot in glasshouse trials. Plant Pathol 72:112–119

    Article  Google Scholar 

  • Kiewnick S, Jacobsen BJ, Braun-Kiewnick A, Eckhoff JLA, Bergman JW (2001) Integrated control of Rhizoctonia crown and root rot of sugar beet with fungicides and antagonistic bacteria. Plant Dis 85:718–722

    Article  PubMed  Google Scholar 

  • Kiran G, Sarangapani M, Gouthami T, Narsimha Reddy AR (2013) Synthesis, characterization, and antimicrobial and antioxidant activities of novel bis-isatin carbohydrazone derivatives. Toxicol Environ Chem 95:367–378

    Article  CAS  Google Scholar 

  • Knudsen IM, Larsen KM, Jensen DF, Hockenhull J (2002) Potential suppressiveness of different field soils to Pythium damping-off of sugar beet. Appl Soil Ecol 21:119–129

    Article  Google Scholar 

  • Krupinsky JM, Bailey KL, McMullen MP, Gossen BD, Turkington TK (2002) Managing plant disease risk in diversified cropping systems. Agron J 94:198–209

    Article  Google Scholar 

  • Kulik T (2008) Detection ofFusarium tricinctum from cereal grain using PCR assay. J Appl Genet 49:305–311

    Article  PubMed  Google Scholar 

  • Kumar P, Thakur S, Dhingra GK, Singh A, Pal MK, Harshvardhan K, Dubey RC, Maheshwari DK (2018) Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal Agric Biotechnol 15:264–269

    Article  Google Scholar 

  • Kumari A, Ghatak A (2020) Biochemical responses of soil-borne necrotroph Sclerotium rolfsii during the pathogenesis on chickpea. IJCS 8:2596–2601

    Google Scholar 

  • Kusstatscher P, Cernava T, Harms K, Maier J, Eigner H, Berg G, Zachow C (2019) Disease incidence in sugar beet fields is correlated with microbial diversity and distinct biological markers. Phytobiomes J 3:22–30. https://doi.org/10.1094/PBIOMES-01-19-0008-R

    Article  Google Scholar 

  • Lahlali R, Aksissou W, Lyousfi N, Ezrari S, Blenzar A, Tahiri A, Ennahli S, Hrustić J, MacLean D, Amiri S (2020) Biocontrol activity and putative mechanism of Bacillus amyloliquefaciens (SF14 and SP10), Alcaligenes faecalis ACBC1, and Pantoea agglomerans ACBP1 against brown rot disease of fruit. Microb Pathog 139:103914

    Article  CAS  PubMed  Google Scholar 

  • Lai X, Qi A, Liu Y, Mendoza LEDR, Liu Z, Lin Z, Khan MFR (2020) Evaluating Inoculation Methods to Infect Sugar Beet with Fusarium oxysporum f. betae and F. secorum. Plant Dis 104:1312–1317

    Article  CAS  PubMed  Google Scholar 

  • Larkin RP, Honeycutt CW (2006) Effects of different 3‑year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology 96:68–79

    Article  PubMed  Google Scholar 

  • Laurence MH, Walsh JL, Shuttleworth LA, Robinson DM, Johansen RM, Petrovic T, Vu TTH, Burgess LW, Summerell BA, Liew ECY (2016) Six novel species of Fusarium from natural ecosystems in Australia. Fungal Divers 77:349–366

    Article  Google Scholar 

  • Le CN, Mendes R, Kruijt M, Raaijmakers JM (2012) Genetic and phenotypic diversity of Sclerotium rolfsii in groundnut fields in central Vietnam. Plant Dis 96:389–397

    Article  CAS  PubMed  Google Scholar 

  • Lecomte C, Alabouvette C, Edel-Hermann V, Robert F, Steinberg C (2016) Biological control of ornamental plant diseases caused by Fusarium oxysporum: a review. Biol Control 101:17–30

    Article  Google Scholar 

  • Lee WJ, Jang KS, Choi YH, Kim HT, Kim J‑C, Choi GJ (2015) Development of an efficient simple mass-screening method for resistant melon to Fusarium oxysporum f. sp. melonis. Res Plant Dis 21:201–207

    Article  Google Scholar 

  • Leslie JF, Summerell BA, Bullock S (2006) The Fusarium Laboratory Manual. Blackwell Publishing, p 416

  • Li S, Hou Y, Peng D, Meng L, Wang J, Zhou M, Chen C (2014) Baseline sensitivity and control efficacy of flutolanil in Rhizoctonia solani. Australas Plant Pathol 43:313–320

    Article  CAS  Google Scholar 

  • Li Y, Guo Q, Wei X, Xue Q, Lai H (2019a) Biocontrol effects of Penicillium griseofulvum against monkshood (Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp. J Appl Microbiol 127:1532–1545

    Article  CAS  PubMed  Google Scholar 

  • Li ZT, Janisiewicz WJ, Liu Z, Callahan AM, Evans BE, Jurick WM, Dardick C (2019b) Exposure in vitro to an environmentally isolated strain TC09 of Cladosporium sphaerospermum triggers plant growth promotion, early flowering, and fruit yield increase. Front Plant Sci 9:1959

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang LZ, Zhao XQ, Yi XY, Chen ZC, Dong XY, Chen RF, Shen RF (2013) Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Y angtze R iver D elta, C hina. Soil Use Manag 29:161–168

    Article  Google Scholar 

  • Lin Y‑H, Chen K‑S, Chang J‑Y, Wan Y‑L, Hsu C‑C, Huang J‑W, P‑FL C (2010) Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnol 27:409–418

    Article  CAS  Google Scholar 

  • Liu Y, Khan MF (2016) Utility of fungicides for controlling Rhizoctonia solani on sugar beet. J Crop Prot 5:33–38

    Article  CAS  Google Scholar 

  • Liu HF, Zhou J, Liao J, Yi JP, Ma DF, Deng JX (2020) Grafted twig rot on Citrus sinensis caused by a member of the Fusarium solani species complex. Can J Plant Pathol 42:133–139

    Article  CAS  Google Scholar 

  • Liu Y, Qi A, Khan MF (2019) Age-dependent resistance to Rhizoctonia solani in sugar beet. Plant Dis 103:2322–2329

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Qi A, Haque ME, Bhuiyan MZR, Khan MF (2021) Combining penthiopyrad with azoxystrobin is an effective alternative to control seedling damping-off caused by Rhizoctonia solani on sugar beet. Crop Prot 139:105374. https://doi.org/10.1016/j.cropro.2020.105374

    Article  CAS  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Hill CB, Hartman GL (2010) Production of Macrophomina phaseolina conidia by multiple soybean isolates in culture. Plant Dis 94:1088–1092

    Article  CAS  PubMed  Google Scholar 

  • Machado TO, Grabow J, Sayer C, Araújo PH de, Ehrenhard ML, Wurm FR (2022) Biopolymer-based nanocarriers for sustained release of agrochemicals: a review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv Colloid Interface Sci 303:102645. https://doi.org/10.1016/j.cis.2022.102645

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud MAA, Omar AF, Mohamed AA, Gouda MI, Emeran AA (2021) Damping-off caused by Pythium aphanidermatum on sugar beet in Egypt. Australas Plant Dis Notes 16:1–4

    Article  Google Scholar 

  • Mahmoudi SB, Ghashghaie S (2013) Reaction of sugar beet S1 lines and cultivars to different isolates of Macrophomina phaseolina and Rhizoctonia solani AG-2-2IIIB. Euphytica 190:439–445

    Article  CAS  Google Scholar 

  • Maitlo SA, Syed RN, Rustamani MA, Khuhro RD, Lodhi AM (2015) Influence of inoculation methods and Inoculum levels on the aggressiveness of Fusarium oxysporum f. sp. ciceris on chickpea and plant growth. Int J Agric Biol 18:31–36. https://doi.org/10.17957/IJAB/15.0057

    Article  Google Scholar 

  • Majumdar R, Strausbaugh CA, Galewski PJ, Minocha R, Rogers CW (2022) Cell-Wall-Degrading enzymes-related genes originating from Rhizoctonia solani increase sugar beet root damage in the presence of Leuconostoc mesenteroides. Int J Mol Sci 23:1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mall AK, Misra V, Pathak AD, Srivastava S (2021) Sugar beet cultivation in india: prospects for bio-ethanol production and value-added co-products. Sugar Tech 23:1218–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin SB, Lucas LT, Campbell CL (1984) Comparative sensitivity of Rhizoctonia solani and Rhizoctonia-like fungi to selected fungicides in vitro. Phytopathology 74:778–781

    Article  CAS  Google Scholar 

  • Martyn RD, Rush CM, Biles CL, Baker EH (1989) Etiology of a root rot disease of sugar beet in Texas. Plant Dis 73:879–884

    Article  Google Scholar 

  • Maurya S, Singh R, Singh DP, Singh HB, Srivastava JS, Singh UP (2007) Phenolic compounds of Sorghum vulgare in response to Sclerotium rolfsii infection. J Plant Interact 2:25–29

    Article  CAS  Google Scholar 

  • Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42:35–59

    Article  CAS  PubMed  Google Scholar 

  • Misawa T, Kurose D (2019) Anastomosis group and subgroup identification of Rhizoctonia solani strains deposited in NARO Genebank, Japan. J Gen Plant Pathol 85:282–294

    Article  Google Scholar 

  • Mishra J, Arora NK (2016) Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Bioformulations: for sustainable agriculture. Springer, Berlin Heidelberg, pp 3–33

    Google Scholar 

  • Mishra PK, Fox RT, Culham A (2003) Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiol Lett 218:329–332

    Article  CAS  PubMed  Google Scholar 

  • Misra V, Lal RJ, Mall AK, Srivastava S, Baitha A (2022) Integrated disease management in sugar beet for sustainable productivity. In: Sugar beet cultivation, management and processing. Springer, Berlin Heidelberg, pp 607–619

    Chapter  Google Scholar 

  • Moayedi G, Mostowfizadeh-Ghalamfarsa R (2011) Antagonistic activities of Trichoderma spp. on Phytophthora root rot of sugar beet. Iran Agric Res 29:21–38

    Google Scholar 

  • Moine LM, Labbé C, Louis-Seize G, Seifert KA, Bélanger RR (2014) Identification and detection of Fusarium striatum as a new record of pathogen to greenhouse tomato in northeastern America. Plant Dis 98:292–298

    Article  CAS  PubMed  Google Scholar 

  • Moliszewska EB, Wiśniewski W (2006) Infestation of sugar beet fields by Rhizopus arrhizus in atypical weather conditions in the summer of 2006. Phytopathol Pol 41:75

    Google Scholar 

  • Monteiro F, Frese L, Castro S, Duarte MC, Paulo OS, Loureiro J, Romeiras MM (2018) Genetic and genomic tools to asssist sugar beet improvement: the value of the crop wild relatives. Front Plant Sci 9:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Morita Y, Tojo M (2007) Modifications of PARP medium using fluazinam, miconazole, and nystatin for detection of Pythium spp. in soil. Plant Dis 91:1591–1599

    Article  CAS  PubMed  Google Scholar 

  • Netto A, Sacon D, Gallina A, Fochesatto M, Stefanski FS, Milanesi PM (2020) Use of systemic fungicides combined with multisite to control of asian rust and soybean yield. Colloquium Agrar 16:101–108

    Article  Google Scholar 

  • Nguyen P‑A, Strub C, Fontana A, Schorr-Galindo S (2017) Crop molds and mycotoxins: alternative management using biocontrol. Biol Control 104:10–27

    Article  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Société Environ 15:327–337

    Google Scholar 

  • Nitschke E, Nihlgard M, Varrelmann M (2009) Differentiation of eleven Fusarium spp. isolated from sugar beet, using restriction fragment analysis of a polymerase chain reaction—amplified translation elongation factor 1α gene fragment. Phytopathology 99:921–929

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusariumare nonorthologous. Mol Phylogenet Evol 7:103–116

    Article  PubMed  Google Scholar 

  • O’Donnell K, Ward TJ, Robert VA, Crous PW, Geiser DM, Kang S (2015) DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 43:583–595

    Article  Google Scholar 

  • Okabe I, Matsumoto N (2003) Phylogenetic relationship of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. delphinii based on ITS sequences. Mycol Res 107:164–168

    Article  CAS  PubMed  Google Scholar 

  • Olaya G, Buitrago C, Pearsaul D, Sierotzki H, Tally A (2012) Detection of resistance to QoI fungicides in Rhizoctonia solani isolates from rice. In: Phytopathology, vol 3340, pp 88–88

    Google Scholar 

  • Olson JD, Damicone JP, Kahn BA (2016) Identification and characterization of isolates of Pythium and Phytophthora spp. from snap beans with cottony leak. Plant Dis 100:1446–1453

    Article  CAS  PubMed  Google Scholar 

  • Olsson AA, Persson L, Olsson S (2011) Variations in soil characteristics affecting the occurrence of Aphanomyces root rot of sugar beet—Risk evaluation and disease control. Soil Biol Biochem 43:316–323

    Article  CAS  Google Scholar 

  • Olubukola OB, Bernard RG (2012) Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci Res Essays 7:2431–2439

    Google Scholar 

  • Palmieri D, Vitullo D, De Curtis F, Lima G (2017) A microbial consortium in the rhizosphere as a new biocontrol approach against Fusarium decline of chickpea. Plant Soil 412:425–439

    Article  CAS  Google Scholar 

  • Pan Z, Zhang R, Zicari S (2019) Integrated processing technologies for food and agricultural by-products. Academic Press

    Google Scholar 

  • Panella L, Kaffka SR (2010) Sugar beet (Beta vulgaris L) as a biofuel feedstock in the United States. In: Sustainability of the sugar and sugar-ethanol industries. ACS, pp 163–175

    Chapter  Google Scholar 

  • Paramasivan M, Chandrasekaran A, Mohan S, Muthukrishnan N (2014) Ecological management of tropical sugar beet (TSB) root rot (Sclerotium rolfsii (Sacc.) by rhizosphere Trichoderma species. Arch Phytopathol Plant Prot 47:1629–1644

    Article  Google Scholar 

  • Parikh L, Adesemoye AO (2018) Impact of delivery method on the efficacy of biological control agents and the virulence of Fusarium root rot pathogens in the greenhouse. Biocontrol Sci Technol 28:1191–1202

    Article  Google Scholar 

  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451

    Article  CAS  Google Scholar 

  • Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol App Sci 3:71–84

    Google Scholar 

  • Paul SK, Mahmud NU, Gupta DR, Surovy MZ, Rahman M, Islam MT (2021) Characterization of Sclerotium rolfsii Causing Root Rot of Sugar Beet in Bangladesh. Sugar Tech 23:1199–1205

    Article  Google Scholar 

  • Pelka N, Buchholz M, Musshoff O (2015) Competitiveness of energy crop rotations with and without sugar beets for biogas production considering the individual risk tolerance. Ber Landwirtsch 93(1)

  • Postma J, Schilder MT (2015) Enhancement of soil suppressiveness against Rhizoctonia solani in sugar beet by organic amendments. Appl Soil Ecol 94:72–79

    Article  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Plant-Growth-Promot Rhizobacteria PGPR Med Plants, pp 247–260

    Google Scholar 

  • Przemieniecki SW, Kurowski TP, Kotlarz K, Krawczyk K, Damszel M, Pszczólkowska A, Kacprzak-Siuda K, Chareńska A, Mastalerz J (2019) Bacteria isolated from treated wastewater for biofertilization and crop protection against Fusarium spp. pathogens. J Soil Sci Plant Nutr 19:1–11

    Article  CAS  Google Scholar 

  • Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Annu Rev Phytopathol 23:97–127

    Article  CAS  Google Scholar 

  • Qing F, Shiping T (2000) Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranefaciens. Plant Dis 84:1212–1216

    Article  PubMed  Google Scholar 

  • Rahman GKMM et al (2020) Biochar and Organic Amendments for Sustainable Soil Carbon and Soil Health. In: Datta R, Meena R, Pathan S, Ceccherini M (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_3

    Chapter  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rasool M, Akhter A, Soja G, Haider MS (2021) Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci Rep 11:1–16

    Article  Google Scholar 

  • Ravi S, Hassani M, Heidari B, Deb S, Orsini E, Li J, Richards CM, Panella LW, Srinivasan S, Campagna G (2021) Development of an SNP assay for marker-assisted selection of soil-borne Rhizoctonia solani AG-2-2-IIIB resistance in sugar beet. Biology 11:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Razali MN, Hisham SN, Kumar IS, Shukla RN, Lee M, Bakar AMF, Nadarajah K (2021) Comparative genomics: insights on the pathogenicity and lifestyle of Rhizoctonia solani. Int J Mol Sci 22:2183

    Article  CAS  Google Scholar 

  • Reimann S, Elkins JW, Fraser PJ, Hall BD, Kurylo MJ, Mahieu E, Montzka SA, Prinn RG, Rigby M, Simmonds PG (2018) Observing the atmospheric evolution of ozone-depleting substances. Comptes Rendus Geosci 350:384–392

    Article  Google Scholar 

  • Rerhou B, Mosseddaq F, Moughli L, Ezzahiri B, Mokrini F, Bel-Lahbib S, Namr KI (2022) Effect of crop residues management on soil fertility and sugar beet productivity in western Morocco. Ecol Eng 5:256–271

    Google Scholar 

  • Reynolds GJ, Windels CE, MacRae IV, Laguette S (2012) Remote sensing for assessing Rhizoctonia crown and root rot severity in sugar beet. Plant Dis 96:497–505

    Article  PubMed  Google Scholar 

  • Safaiefarahani B, Mostowfizadeh-Ghalamfarsa R, Hardy GSJ, Burgess TI (2016) Characterization of Phytophthora pseudocryptogea andP. sansomeana, associated with sugar beet root rot in Fars Province. Iranian Plant Protection Congress SID. https://sid.ir/paper/933044/en

  • Sandoval-Denis M, Guarnaccia V, Polizzi G, Crous PW (2018) Symptomatic Citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Pers Mol Phylogeny Evol Fungi 40:1–25

    Article  CAS  Google Scholar 

  • Schillinger WF, Paulitz TC (2006) Reduction of Rhizoctonia bare patch in wheat with barley rotations. Plant Dis 90:302–306

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Consortium FB, List FBCA, Bolchacova E (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8:2484

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulze S, Koch H‑J, Märländer B, Varrelmann M (2016) Effect of sugar beet variety and nonhost plant on Rhizoctonia solani AG2-2IIIB soil inoculum potential measured in soil DNA extracts. Phytopathology 106:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Schuster ML, Harris L (1960) Incidence of Rhizoctonia crown rot of sugar beets in irrigated crop rotation. J Am Soc Sugar Beet Technol 11:128–136

    Article  Google Scholar 

  • Scow K, Somasco O, Gunapala N, Lau S, Venette R, Ferris H, Miller R, Shennan C (1994) Transition from conventional to low-input agriculture changes soil fertility and biology. Calif Agric 48:20–26

    Article  Google Scholar 

  • Secor GA, Rivera VV, Khan MFR, Gudmestad NC (2010) Monitoring fungicide sensitivity of Cercospora beticola of sugar beet for disease management decisions. Plant Dis 94:1272–1282

    Article  PubMed  Google Scholar 

  • Secor GA, Rivera-Varas V, Christ DS, Mathew FM, Khan MF, Varrelmann M, Bolton MD (2014) Characterization of Fusarium secorum, a new species causing Fusarium yellowing decline of sugar beet in north central USA. Fungal Biol 118:764–775

    Article  PubMed  Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232

    Article  CAS  PubMed  Google Scholar 

  • Sever Z, Ivić D, Kos T, Miličević T (2012) Identification of Fusarium species isolated from stored apple fruit in Croatia. Arh Hig Rada Toksikol 63:463–469

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Li H (2021) First report of root rot caused by Calonectria montana on sugar beet in Heilongjiang province, China. Plant Dis 105:3292. https://doi.org/10.1094/PDIS-10-20-2252-PDN

    Article  Google Scholar 

  • Sharma P (2020) Evaluation of resistance to Rhizoctonia solani in soybean and assessment of fungicide sensitivity in isolates from sugar beet and soybean. PhD Thesis, University of Minnesota

  • Sharma BS, Pathak VN, Kalpna B (1990) Fungicidal management of root rot of sugar beet induced by Sclerotium rolfsii Sacc. Ind J Mycol Plant Pathol 20:207–210

    Google Scholar 

  • Sharon M, Sneh B, Kuninaga S, Hyakumachi M, Naito S (2008) Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 49:93–114

    Article  CAS  Google Scholar 

  • Shen Z, Zhong S, Wang Y, Wang B, Mei X, Li R, Ruan Y, Shen Q (2013) Induced soil microbial suppression of banana Fusarium wilt disease using compost and biofertilizers to improve yield and quality. Eur J Soil Biol 57:1–8

    Article  Google Scholar 

  • Shu C, Sun S, Chen J, Chen J, Zhou E (2014) Comparison of different methods for total RNA extraction from sclerotia of Rhizoctonia solani. Electron J Biotechnol 17:50–54

    Article  Google Scholar 

  • Singh RK, Dwivedi RS (1987) Studies on biological control of Sclerotium rolfsii Sacc causing foot rot of barley. Acta Bot Indica 15:160–164

    Google Scholar 

  • Singh RK, Dwivedi RS (1990) Fungicidal properties of neem and blue gum against Sclerotium rolfsii Sacc., a foot rot pathogen of barley. Acta Bot Ind 18:260–262

    Google Scholar 

  • Smirnova I, Sadanov A (2019a) Application of agriculturally important microorganisms for biocontrol of root rot infection of sugar beet. Arch Phytopathol Plant Prot 52:698–713. https://doi.org/10.1080/03235408.2019.1588195

    Article  CAS  Google Scholar 

  • Smirnova IE, Sadanov AK (2019b) Cellulolytic bacteria and association of effective microorganisms for biocontrol of root rot infections in sugar beet (Beta vulgaris L.). Agric Biol 54:1041–1052

    Google Scholar 

  • Srivastava SN (2004) Management of sugarbeet diseases. In: Fruit and vegetable diseases. Springer, Berlin Heidelberg, pp 307–355

    Chapter  Google Scholar 

  • Srivastava DA, Harris R, Breuer G, Levy M (2021) Secretion-based modes of action of biocontrol agents with a focus on Pseudozyma aphidis. Plants 10:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sserunkuma H (2016) Identification of QTLs for Resistance Against Rhizoctonia solani and Phoma glycinicola in Soybeans (Glycine max L. Merr). Theses, Dissertations, and Student Research in Agronomy and Horticulture. 103. https://digitalcommons.unl.edu/agronhortdiss/103

  • Stevanato P, Chiodi C, Broccanello C, Concheri G, Biancardi E, Pavli O, Skaracis G (2019) Sustainability of the sugar beet crop. Sugar Tech 21:703–716. https://doi.org/10.1007/s12355-019-00734-9

    Article  CAS  Google Scholar 

  • Strausbaugh CA, Eujayl IA, Panella LW, Hanson LE (2011) Virulence, distribution and diversity of Rhizoctonia solani from sugar beet in Idaho and Oregon. Can J Plant Pathol 33:210–226

    Article  Google Scholar 

  • Su G, Suh S‑O, Schneider RW, Russin JS (2001) Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology 91:120–126

    Article  CAS  PubMed  Google Scholar 

  • Sugiharto S (2019) A review of filamentous fungi in broiler production. Ann Agric Sci 64:1–8

    Article  Google Scholar 

  • Sultana F, Hossain MM (2022) Assessing the potentials of bacterial antagonists for plant growth promotion, nutrient acquisition, and biological control of Southern blight disease in tomato. PLoS ONE 17:e267253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summerell BA (2019) Resolving Fusarium: current status of the genus. Annu Rev Phytopathol 57:323–339

    Article  CAS  PubMed  Google Scholar 

  • Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Article  Google Scholar 

  • Taguchi K, Ogata N, Kubo T, Kawasaki S, Mikami T (2009) Quantitative trait locus responsible for resistance to Aphanomyces root rot (black root) caused by Aphanomyces cochlioides Drechs. in sugar beet. Theor Appl Genet 118:227–234. https://doi.org/10.1007/s00122-008-0891-3

    Article  PubMed  Google Scholar 

  • Taha EM (2020) Morphological, phylogenetic, and pathogenic analyses of Fusarium andiyazi associated with sugar beet root diseases. Arch Phytopathol Plant Prot 54:319–337

    Article  Google Scholar 

  • Tanova K, Petrova R (2008) Influence of extracts from essential oil plants on the growth of Rhizoctonia solani Kuhn, agent of the sugar beet root rot. Bulg J Agric Sci 14:309–312

    Google Scholar 

  • Thilagavathi R, Rajendran L, Nakkeeran S, Raguchander T, Balakrishnan A, Samiyappan R (2012) Vermicompost-based bioformulation for the management of sugarbeet root rot caused by Sclerotium rolfsii. Arch Phytopathol Plant Prot 45:2243–2250

    Article  Google Scholar 

  • Toffolatti SL, Vercesi A (2012) QoI resistance in Plasmopara viticola in Italy: evolution and management strategies. In: Fungicide resistance in crop protection: risk and management. CABI, Wallingford, pp 172–183

    Chapter  Google Scholar 

  • Trkulja N, Milosavljević A, Oro V (2022) Rhizoctonia Disease and Its Management. In: Sugar beet cultivation, management and processing. Springer, Berlin Heidelberg, pp 793–811

    Chapter  Google Scholar 

  • Tuitert G, Szczech M, Bollen GJ (1998) Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste. Phytopathology 88:764–773

    Article  CAS  PubMed  Google Scholar 

  • Vandemark GJ, Kraft JM, Larsen RC, Gritsenko MA, Boge WL (2000) A PCR-based assay by sequence-characterized DNA markers for the identification and detection of Aphanomyces euteiches. Phytopathology 90:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Vanova M, Hajslova J, Havlová P, Matusinsky P, Lancová K, Spitzerová D (2004) Effect of spring barley protection on the production of Fusarium spp. mycotoxins in grain and malt using fungicides in field trials. PLANT SOIL ENVIRON 50:447–455

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq BA (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbon EH, Trapet PL, Kruijs S, Temple-Boyer-Dury C, Rouwenhorst TG, Pieterse CM (2019) Rhizobacteria-mediated activation of the Fe deficiency response in Arabidopsis roots: impact on Fe status and signaling. Front Plant Sci 10:909

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Environmental biotechnology: for sustainable future. Springer, Berlin Heidelberg, pp 129–173

    Chapter  Google Scholar 

  • Vida C, Vicente A de, Cazorla FM (2020) The role of organic amendments to soil for crop protection: Induction of suppression of soilborne pathogens. Ann Appl Biol 176:1–15

    Article  Google Scholar 

  • Vincelli PC, Wilcox WF, Beaupre CMS (1990) First report of Phytophthora cryptogea causing root rot of sugarbeet in Wyoming. Plant Dis 74:614

    Article  Google Scholar 

  • Vojvodić M, Lazić D, Mitrović P, Tanović B, Vico I, Bulajić A (2019) Conventional and real-time PCR assays for detection and identification of Rhizoctonia solani AG-2‑2, the causal agent of root rot of sugar beet. Pestic Fitomedicina 34:19–29

    Article  Google Scholar 

  • Wang Z, Jiang M, Chen K, Wang K, Du M, Zalán Z, Hegyi F, Kan J (2018) Biocontrol of Penicillium digitatum on postharvest citrus fruits by Pseudomonas fluorescens. J Food Qual 2018:ID 2910481

    Google Scholar 

  • Webb KM, Delgrosso SJ, West MS, Freeman C, Brenner T (2017) Influence of environment, crop age and cultivar on the development and severity of Fusarium yellows in field-grown sugar beet. Can J Plant Pathol 39:37–47

    Article  CAS  Google Scholar 

  • Weinhold AR, Sinclair JB (1996) Rhizoctonia solani: penetration, colonization, and host response. In: Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Springer, Berlin Heidelberg, pp 163–174

    Google Scholar 

  • Wen L, Lee-Marzano S, Ortiz-Ribbing LM, Gruver J, Hartman GL, Eastburn DM (2017) Suppression of soilborne diseases of soybean with cover crops. Plant Dis 101:1918–1928

    Article  CAS  PubMed  Google Scholar 

  • Whitney ED, Duffus JE (1986) Compendium of beet diseases and insects. The Disease compendium series of the American Phytopathological Society. p 76

  • Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J, Jelonek L, Pühler A, Fogelqvist J, Varrelmann M, Schlüter A (2016) Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes. BMC Genomics 17:1–12

    Article  Google Scholar 

  • Williams KJ, Dennis JI, Smyl C, Wallwork H (2002) The application of species-specific assays based on the polymerase chain reaction to analyse Fusarium crown rot of durum wheat. Australas Plant Pathol 31:119–127

    Article  Google Scholar 

  • Windels CE (2000) Aphanomyces root rot on sugar beet. Plant Health Prog 1:8

    Article  Google Scholar 

  • Windels CE, Brantner JR (2004) Previous crop influences Rhizoctonia on sugarbeet. Sugarbeet Res Ext Rep 35:227–231

    Google Scholar 

  • Yacoub A, Gerbore J, Magnin N, Chambon P, Dufour M‑C, Corio-Costet M‑F, Guyoneaud R, Rey P (2016) Ability of Pythium oligandrum strains to protect Vitis vinifera L., by inducing plant resistance against Phaeomoniella chlamydospora, a pathogen involved in Esca, a grapevine trunk disease. Biol Control 92:7–16

    Article  Google Scholar 

  • Yassin MA (2013) Interaction of Rhizoctonia solani anastomosis groups and sugar beet cultivars. J Pure Appl Microbiol 7:1869–1876

    Google Scholar 

  • Yousefi M, Khoramivafa M, Shahamat EZ (2015) Water, nitrogen and energy use efficiency in major crops production systems in Iran. Adv Plants Agric Res 2:126–129

    Google Scholar 

  • Zhang C‑L, Xu D‑C, Jiang X‑C, Zhou Y, Cui J, Zhang C‑X, Chen D‑F, Fowler MR, Elliott MC, Scott NW, Dewar AM, Slater A (2008) Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Ann Appl Biol 152:143–156. https://doi.org/10.1111/j.1744-7348.2008.00228.x

    Article  CAS  Google Scholar 

  • Zhang L, Khabbaz SE, Wang A, Li H, Abbasi PA (2015) Detection and characterization of broad-spectrum antipathogen activity of novel rhizobacterial isolates and suppression of Fusarium crown and root rot disease of tomato. J Appl Microbiol 118:685–703

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wu J, Xu B (2018) Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ Earth Sci 77:1–12

    Article  Google Scholar 

  • Zhao C, Li Y, Wu S, Wang P, Han C, Wu X (2019a) Anastomosis group and pathogenicity of Rhizoctonia spp. associated with seedling damping-off of sugar beet in China. Eur J Plant Pathol 153:869–878

    Article  Google Scholar 

  • Zhao C, Zhang X, Hua H, Han C, Wu X (2019b) Sensitivity of Rhizoctonia spp. to flutolanil and characterization of the point mutation in succinate dehydrogenase conferring fungicide resistance. Eur J Plant Pathol 155:13–23

    Article  CAS  Google Scholar 

  • Zhao S, Chen X, Deng S, Dong X, Song A, Yao J, Fang W, Chen F (2016) The effects of fungicide, soil fumigant, bio-organic fertilizer and their combined application on chrysanthemum Fusarium wilt controlling, soil enzyme activities and microbial properties. Molecules 21:526

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Ni Y, Liu X, Zhao H, Wang J, Chen Y‑C, Chen W, Liu H (2020) A simple and effective technique for production of pycnidia and pycnidiospores by Macrophomina phaseolina. Plant Dis 104:1183–1187

    Article  PubMed  Google Scholar 

  • Zhou L, Zhang Z, Wei M, Xie Y, He S, Shi H, Lin Z (2019) Evaluation of the antifungal activity of individual and combined monoterpenes against Rhizopus stolonifer and Absidia coerulea. Environ Sci Pollut Res 26:7804–7809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Phytopathology Unit of the Department of Plant Protection and environment (ENA-Meknes) and the Faculty of Sciences (Moulay Ismail University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Lahlali.

Ethics declarations

Conflict of interest

A. Farhaoui, A. Tahiri, M. Khadiri, N. El Alami and R. Lahlali declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhaoui, A., Tahiri, A., Khadiri, M. et al. Fungal Root Rots of Sugar Beets: A Review of Common Causal Agents and Management Strategies. Gesunde Pflanzen 75, 1411–1440 (2023). https://doi.org/10.1007/s10343-023-00861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00861-0

Keywords

Navigation