Skip to main content

Advertisement

Log in

Study of the Effect of Salt Stress on a Legume Faba Bean (Vicia faba L.)

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Due to the fast climate change, salt stress and water stress are the main abiotic stresses that are limiting the agricultural production and threatening the food security in the world. Salt stress affects negatively the growth, the productivity and the quality of crops, it has negative impacts on the morphology and physiology of the plants. The objective of this research is to study the effect of different concentrations of NaCl (S0 = 0; S1 = 1.4; S2 = 2.2 and S3 = 8.8 g/l) on the morphological and physiological parameters of Faba bean (Vicia faba L.).

The experiment was conducted in a greenhouse, in pots with a 14.5 cm height, top dimensions of 12.5 cm × 12.5 cm and bottom dimensions of 10 cm × 10 cm. In on hand, the salt stress results obtained revealed a non-significant decreases in all the studied parameters of Faba bean at the salinity level S3 = 32 dS/m = 8.8 g/l, compared to S0 (control). While in the other hand, a small increase was registered for the following parameters: fresh and dry weight of the aerial and root parts, and on the leaf surface under low level of salt concentration EC: S1 = 1.4 g/l. The leaf proline content did not show a significant differences between the different salinity levels. We can conclude that the Reina mora variety of Vicia faba L. tolerates the salt stress induced by NaCl concentrations used in this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad P, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694

    CAS  Google Scholar 

  • Amanturdiev AB, Rejapova MM, Kurbanbaev ID, Azimov AA, Matniyazova HX (2020) Study on the stability of world diversity of cultured species G. hirsutum L. to salination. AJPS 11(09):1360

    Article  Google Scholar 

  • Amirjani MR (2010) Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol 5(6):350–360

    Article  CAS  Google Scholar 

  • Andriolo JL, Luz GLD, Witter MH, Godoi RDS, Barros GT, Bortolotto OC (2005) Growth and yield of lettuce plants under salinity. Hortic Bras 23(4):931–934

    Article  Google Scholar 

  • Asfaw E, Suryabhagavan KV, Argaw M (2018) Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. J Saudi Soc Agric Sci 17(3):250–258. https://doi.org/10.1016/j.jssas.2016.05.003

    Article  Google Scholar 

  • Baweja P, Kumar G (2020) Abiotic stress in plants: an overview. In Plant stress biology, pp 1–15

    Google Scholar 

  • Bouassaba K, Chougui S (2018) Effet Du Stress Salin Sur Le Comportement Biochimique Et Anatomique Chez Deux Variétés De Piment (Capsicum Annuum L.) À Mila/Algérie. Eur Sci J 14(15):159–174

    Google Scholar 

  • Cano EA, Bolarin MC, Perez-Alfocea F, Caro M (1991) Effect of NaCl priming on increased salt tolerance in tomato. J Hortic Sci 66(5):621–628

    Article  CAS  Google Scholar 

  • Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic 86(3):247–260

    Article  CAS  Google Scholar 

  • Chrysargyris A, Papakyriakou E, Petropoulos SA, Tzortzakis N (2019) The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. J Hazard Mater 368:584–593

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Roupahel Y, Cardarelli M, Rea E (2006) Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience 41(3):622–627

    Article  CAS  Google Scholar 

  • El Midaoui M, Benbella M, Aït Houssa A, Ibriz M, Talouizte A (2007) Contribution à l’étude de quelques mécanismes d’adaptation à la salinité chez le tournesol cultivé (Helianthus annuus L.). Rev HTE 136:29–34

    Google Scholar 

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12(4):185–190

    Article  CAS  PubMed  Google Scholar 

  • Gama PBS, Inanaga S, Tanaka K, Nakazawa R (2007) Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr J Biotechnol 6(2):79–88

    CAS  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47(1):39–50

    Article  CAS  Google Scholar 

  • Janda T, Darko É, Shehata S, Kovács V, Pál M, Szalai G (2016) Salt acclimation processes in wheat. Plant Physiol Biochem 101:68–75

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Kirnak H, Higgs D (2001) Effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). J Plant Nutr 24(9):1457–1471

    Article  CAS  Google Scholar 

  • Khadri M, Pliego L, Soussi M, Lluch C, Ocaña A (2001) Ammonium assimilation and ureide metabolism in common bean (Phaseolus vulgaris) nodules under salt stress. Agronomie 21:635–643

    Article  Google Scholar 

  • Latef AAHA, Ahmad P (2015) Legumes and breeding under abiotic stress: an overview. In Legumes under environmental stress: Yield, improvement and adaptations, p 315

    Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148(1–2):4–14

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativaL.) cultivars differing in salinity resistance. Ann Bot 78(3):389–398

    Article  CAS  Google Scholar 

  • Mehrizi MH, Shariatmadari H, Khoshgoftarmanesh AH, Zarezadeh A (2011) Effect of salinity and zinc on physiological and nutritional responses of rosemary. Int Agrophys 25(4):349–353

    CAS  Google Scholar 

  • Misra SC, Randive R, Rao VS, Sheshshayee MS, Serraj R, Monneveux P (2006) Relationship between carbon isotope discrimination, ash content and grain yield in wheat in the Peninsular Zone of India. J Agron Crop Sci 192(5):352–362

    Article  CAS  Google Scholar 

  • Monneveux P, Nemmar M (1986) Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.): étude de l’accumulation de la proline au cours du cycle de développement

    Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AT, Lindsay MP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. In: Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium. Springer, Dordrecht, pp 93–105

    Chapter  Google Scholar 

  • Mustafa G, Akhtar MS, Abdullah R (2019) Global concern for salinity on various agro-ecosystems. In: Akhtar M (ed) Salt stress, microbes, and plant interactions: causes and solution. Springer, Singapore

    Google Scholar 

  • Nazarbeygi E, Yazdi HL, Naseri R, Soleimani R (2011) The effects of different levels of salinity on proline and A‑, B‑chlorophylls in canola. Am Eurasian J Agric Environ Sci 10:70–74

    Google Scholar 

  • Noreen S, Fatima Z, Ahmad S, Ashraf M (2018) Foliar application of micronutrients in mitigating abiotic stress in crop plants. In: Plant nutrients and abiotic stress tolerance. Springer, Singapore, pp 95–117

    Chapter  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Qados AMA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10(1):7–15

    Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18(1):529

    Article  Google Scholar 

  • Saied AS, Keutgen AJ, Noga G (2005) The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’. Sci Hortic 103(3):289–303

    Article  CAS  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163(5):1037–1046

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49(1):85

    Article  CAS  Google Scholar 

  • Selvakumar G, Kim K, Hu S, Sa T (2014) Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress. In Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 115–144

    Chapter  Google Scholar 

  • Srivastava P, Wu QS, Giri B (2019) Salinity: an overview. In Microorganisms in saline environments: strategies and functions. Springer, Cham, pp 3–18

    Chapter  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62(1):1–9

    Article  CAS  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2000) Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. In IV International Symposium on In Vitro Culture and Horticultural Breeding, Vol 560, pp 285–292

  • Wu G, Zhou Z, Chen P, Tang X, Shao H, Wang H (2014) Comparative Ecophysiological Study of Salt Stress for Wild and Cultivated Soybean Species from the Yellow River Delta, China. Sci World J 2014:1–13. https://doi.org/10.1155/2014/651745

  • Yuvaraj M, Subash K, Bose C, Elavarasi P, Tawfik E (2021) Chapter: Soil salinity and its management. In Meena RS, Datta R (eds) Soil moisture importance. Books on Demand

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjib Drouiche.

Ethics declarations

Conflict of interest

Z.I. Ziche, A.S. Belouchrani and N. Drouiche declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziche, Z.I., Belouchrani, A.S. & Drouiche, N. Study of the Effect of Salt Stress on a Legume Faba Bean (Vicia faba L.). Gesunde Pflanzen 75, 1897–1903 (2023). https://doi.org/10.1007/s10343-023-00857-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00857-w

Keywords

Navigation