Skip to main content

Advertisement

Log in

Reaction of Chickpea Genotypes to Salinity-Inhibiting Applications at Different Salt Stress Levels

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Salinity, an abiotic stress factor, has negative effects in chickpeas. CO2, organic acids, and Ca-derived minerals are used to reduce the effects of salinity. In this way, the salt-acceptance mechanism begins. To eliminate these negative effects, in this study, plant growth regulators (salicylic acid [SA] and gibberellic acid [GA3]) and low-dose CaCl2 were applied to chickpea genotypes exposed to different doses of NaCl salt stress. The research was established in greenhouses of the Isparta University of Applied Sciences, Faculty of Agriculture Field Crops, in 2021, according to completely random plots divided into a split trial design with three replications. Inhibitory applications applied to genotypes under salt stress had a positive effect on examined traits compared to controls. Among these inhibitor applications, GA3 was determined as the most effective, followed by SA and CaCl2. Generally, with an increase in salt dose, all properties decreased except mean germination time and proline content. Among the genotypes, Isık-05 was found to be superior in terms of seedling and germination characteristics under salt stress, while İspanyol was more sensitive. As a result, it was predicted that chickpea plants under salt stress could be relieved by giving low levels of GA3 in irrigation water for improved emergence and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sánchez-Blanco MJ, Hernández JA (2015) NaCl-induced physiological and biochemical adaptative mechanism in the ornamental Myrtus cummunis L. Plants. J Plant Physiol 183:41–51

    Article  CAS  PubMed  Google Scholar 

  • Al Sahil AA (2016) Effect of gibberellic and salicylic acids pre-soaking on seed germination attributes of cucumber (Cucumis sativus L.) under induced salt stress. Cercetari Agron Moldova 49(1):99–109

    Article  Google Scholar 

  • Al-Whaibi MH, Siddiqui MH, Basalah MO (2012) Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma 249(3):769–778

    Article  CAS  PubMed  Google Scholar 

  • Ali AYA, Ibrahim MEH, Zhou G, Nimir NEA, Elsiddig AMI, Jiao X, Elradi BM (2021) Gibberellic acid and nitrogen efficiently protect early seedlings growth stage from salt stress damage in sorghum. Sci Rep 11(1):1–11

    Google Scholar 

  • Ali EF, Bazaid SA, Hassan FAS (2014) Salinity tolerance of taif roses by gibberellic acid (GA3). Int J Sci Res 3(11):184–192

    Google Scholar 

  • Ameur H, Ghoul M (2014) Effect of salinity stress, Streptomyces sp. SF5 and Salsola vermiculata on germination of Triticum durum L. SJAR 3:7–16

    Google Scholar 

  • Asadi-Sanam S, Zavareh M, Pirdashti H, Mirjalili MH, Hashempour A (2014) Effect of exogenous nitric oxide on germination and some of biochemical characteristics of purple coneflower (Echinacea purpurea L.) in saline condition. Iran J Plant Physiol 6(20):55–74

    Google Scholar 

  • Ashraf MY, Akhtar K, Sarwar G, Ashraf M (2002) Evaluation of arid and semi-arid ecotypes of guar (Cyamopsis tetragonoloba L.) for salinity (NaCl) tolerance. J Arid Environ 52(4):473–482

    Article  Google Scholar 

  • Atıș İ (2011) Effects of salt stress on germination and seedling growth of some sorgum (Sorghum bicolor L. Moench) cultivars. J Fac Agric Demirel Univ 6(2):58–67

    Google Scholar 

  • Aydın B, Nalbantoglu B (2011) Effects of cold and salicylic acid treatments on nitrate reductase activity in spinach leaves. Turk J Biol 35(4):443–448

    Google Scholar 

  • Bahrabadi E, Tavakkol Afshari R, Mahallati MN, Seyyedi SM (2022) Abscisic, gibberellic, and salicylic acids effects on germination indices of corn under salinity and drought stresses. J Crop Improv 36(1):73–89

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bibi N, Khattak AB, Khattak GS, Mehmood Z, Ihsanullah I (2007) Quality and consumers acceptability studies and their inter-relationship of newly evolved desi type chickpea cultivars (Cicer arietinum L.). Quality evolution of new chickpea cultivars. Int J Food Sci Tech 42(5):528–534. https://doi.org/10.1111/j.1365-2621.2006.01246.x

    Article  CAS  Google Scholar 

  • Bilgili D, Atak M, Mavi K (2018) The effect of nacl stress on germination and seedling growth in some bread wheat genotypes. J Mustafa Kemal Univ Fac Agric 23(1):85–96

    Google Scholar 

  • Cavusoglu K, Kılıc S, Kabar K (2007) Some morphological and anatomical observations during alleviation of salinity (NaCI) stress on seed germination and seedling growth of barley by polyamines. Acta Physiol Plant 29(6):551–557

    Article  CAS  Google Scholar 

  • Cavusoglu K, Tepe B, Kılıc S (2014) Effects of salicylic acid pretreatment on the seed germination, seedling growth and leaf anatomy of barley under saline conditions. Cereal Res Commun 42(2):229–238

    Article  CAS  Google Scholar 

  • Dua RP (1992) Differential response of chickpea (Cicer arietinum) genotypes to salinity. J Agric Sci 119(3):367–371

    Article  Google Scholar 

  • Echi RM, Aslı DE, Vajedi SJ, Kashani ZF (2013) The effect of seed pretreatment by salicylhydroxamic acid on germination indices of safflower under salinity stress. Int J Biosci 3(6):181–189

    Article  CAS  Google Scholar 

  • EI-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  Google Scholar 

  • Haileselasie TH, Teferii G (2012) The effect of salinity stress on germination of chickpea (Cicer arietinum L.) land race of Tigray. Curr Res J Biol Sci 4(5):578–583

    CAS  Google Scholar 

  • Hossain MI, Mannan MA, Karim MA (2015) Salicylic acid and gibberelic acid ameliorates the adverse effects of salinity on chickpea. Bangladesh J Agric 18(1):81–88

    Article  Google Scholar 

  • Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008) Recent advances in salt stress biology a review. BMBR 3(1):8–13

    Google Scholar 

  • Hussien Ibrahim ME, Zhu X, Zhou G, Ali AAY, Elsiddig IAM, Farah GA (2019) Response of some wheat varieties to gibberellic acid under saline conditions. AGE 2(1):1–7

    Article  Google Scholar 

  • Ibrahim W, Qiu CW, Zhang C, Cao F, Shuijin Z, Wu F (2019) Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance. Physiol Plant 165(2):155–168

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20:463–468

    Article  CAS  Google Scholar 

  • Jiang Y, Huang B (2001) Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot 52(355):341–349

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans Royal Soc A Math Phys Eng Sci 374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  • Kandil AA, Sharief AE, Abido WAE, Awed AM (2014) Effect of gibberellic acid on germination behaviour of sugar beet cultivars under salt stress conditions of Egypt. Sugar Tech 16:211–221

    Article  CAS  Google Scholar 

  • Karaman R, Kaya M (2017) The effects of different chlorine salts and doses applied to lentils (Lens esculanta Moench) on some early growth characteristics. J Agric Sci 23(1):10–21

    Google Scholar 

  • Karlıdag H, Yildirim E, Turan M (2009) Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci Agric 66(2):180–187

    Article  Google Scholar 

  • Kaydan D, Yagmur M (2006) Effects of different salicylic acid doses and treatments on wheat (Triticum aestivum L.) and Lentil (Lens culinaris Medik.) yield and yield components. J Agri Sci 12(3):285–293

    Google Scholar 

  • Kendal E, Tekdal S, Aktaş H, Karaman M, Berekatoğlu K, Doğan H (2014) Determination of yield and yield components of spring barley genotypes using biplot analysis. Trakya Univ J Nat Sci 15(2):95–103

    Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32(1):121–132

    Article  Google Scholar 

  • Khayyat M, Rajaee S, Eshghi S, Tafazoli E (2009) Calcium effects on changes in chlorophyll contents, dry weight and micronutrients of strawberry (Fragaria× ananassaDuch.) plants under salt-stress conditions. Fruits 64(1):53–59

    Article  CAS  Google Scholar 

  • Khayyat M, Khanizadeh S, Tafazoli E, Rajaee S, Kholdebarin B, Emam Y (2011) Effects of different calcium forms on gas exchange activities, water usage and macronutrient uptake by strawberry plants under sodium chloride stress. J Plant Nutr 34(3):427–435

    Article  CAS  Google Scholar 

  • Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Kızılgeci F, Yıldırım M (2014) Determination of salt stress resistance of wild wheat germination period. Turkey 5th Seed Congress with International Participation, Diyarbakır

    Google Scholar 

  • Kumari N, Rai PK, Bara BM, Singh I, Rai K (2017) Effect of halo priming and hormonal priming on seed germination and seedling vigour in maize (Zea mays L.) seeds. J Pharmacogn Phytochem 6(4):27–30

    CAS  Google Scholar 

  • Kumlay AM, Eryigit T (2011) Growth and development regulators in plants: plant hormones. Igdır Univ J Inst Sci Technol 1(2):47–56

    Google Scholar 

  • Lacerda C, Cambraia J, Oliva M, Ruiz H (2005) Changes in growth and solute concentrations in sorghum leaves and roots during salt stress recovery. EEB 54:69–76

    Google Scholar 

  • Manjili FA, Sedghi M, Pessarakli M (2012) Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress. J Plant Nutr 35(7):1098–1111

    Article  CAS  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177(3):181–189

    Article  CAS  Google Scholar 

  • Mokhtari I, Abrishamchi P, Ganjalı A (2008) The effects of Calcium on amelioration of injuries salt stress on seed germination of tomato (Lycopersicon esculentom. L). mination of tomato (Lycopersicon esculentom L). J Agric Sci Tech 22:89–100

    Google Scholar 

  • Nemoto Y, Sasakuma T (2002) Differential stress responses of early salt-stress responding genes in common wheat. Phytochemistry 61(2):129–133

    Article  CAS  PubMed  Google Scholar 

  • Özaktan H (2021a) Technologıcal Characterıstıcs of Chıckpea (Cicer arietinum L.) Cultıvars grown under natural Condıtıons. Turk J Field Crop 26(2):235–243. https://doi.org/10.17557/tjfc.1018627

    Article  Google Scholar 

  • Özaktan H (2021b) Sieve analysis for kernel size of some registered chickpea cultivars. Turk J Agric Sci Technol 9(11):1953–1959

    Google Scholar 

  • Ozaktan H, Çiftçi CY, Kaya M, Uzun S, Uzun O, Akdogan G (2018) Chloride salts inhibit emergence and seedling growth of chickpea rather than germination. Legum Res. https://doi.org/10.18805/lr.v40i04.9007

    Article  Google Scholar 

  • Qureshi KM, Saman C, Qureshi US, Abbasi NA (2013) Impact of exogenous application of salt and growth regulators on growth and yield of strawberry. Pak J Bot 45(4):1179–1185

    CAS  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15(6):625–632

    Article  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 407–421. https://www.jstor.org/stable/24108735

  • Salahshoor F, Kazemi F (2016) Effect of calcium on reducing salt stress in seed germination and early growth stage of Festuca ovina L. Plant Soil Environ 62(10):460–466

    Article  CAS  Google Scholar 

  • Sarkar RK, Chakraborty K, Chattopadhyay K, Ray S, Panda D, Ismail AM (2019) Responses of rice to individual and combined stresses of flooding and salinity. In: Advances in rice research for abiotic stress tolerance, pp 281–297

    Chapter  Google Scholar 

  • Seydi AB (2003) Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turk J Agric 27:253–260

    Google Scholar 

  • Shaheenuzzamn M (2014) Screening of chickpea genotypes against salinity stress. Bangladesh J Agric Res 39(4):605–619

    Article  Google Scholar 

  • Shatpathy P, Kar M, Dwibedi SK, Dash A (2018) Seed priming with salicylic acid improves germination and seedling growth of rice (Oryza sativa L.) under PEG-6000 induced water stress. Int J Curr Microbiol Appl Sci 7(10):907–924

    Article  CAS  Google Scholar 

  • Srivastava AK, Bhargava P, Thapar R, Rai LC (2008) Salinity-inducedphysiologicalandproteomic changes in Anabaena doliolum. EEB 64:49–57

    CAS  Google Scholar 

  • Wang YH, Zhang GG, Chen Y, Gao J, Sun YR, Sun MF, Chen JP (2019) Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiol Plant 41(6):93

    Article  CAS  Google Scholar 

  • Wen A, Balogh B, Momol MT, Olson SM, Jones JB (2009) Management of bacterial spot of tomato with phosphorous acid salts. J Crop Prot 28(10):859–863

    Article  CAS  Google Scholar 

  • Younesi O, Muradi A (2015) Effect of different priming methods on germination and seedling establishment of two medicinal plants under salt stress conditions. Cercetari Agron În Moldova 48(3):43–51

    Article  Google Scholar 

  • Yousof FI (2013) Effect of rıce seed prımıng wıth calcıum chlorıde (CaCl2) on germınatıon and seedlıngs vıgor under salınıty stress. J Plant Prod Sci 4(4):523–535

    Google Scholar 

  • Zehra A, Gul B, Ansari R, Khan MA (2012) Role of calcium in alleviating effect of salinity on germination of Phragmites karka seeds. S Afr J Bot 78:122–128

    Article  CAS  Google Scholar 

  • Zeng L, Shannon MC, Lesch SM (2001) Timing of salinity stress affects rice growth and yield components. AgricN Water Manag 48(3):191–206

    Article  Google Scholar 

  • Zhou G, Nimir N, Lu S, Zhai F, Wang Y (2014) Gibberellic acid and salinity affected growth and antioxidant enzyme activities in castor bean plants at early growth stage. Agron J 106:1340–1348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruziye Karaman.

Ethics declarations

Conflict of interest

R. Karaman declares that he has no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaman, R. Reaction of Chickpea Genotypes to Salinity-Inhibiting Applications at Different Salt Stress Levels. Gesunde Pflanzen 75, 1823–1831 (2023). https://doi.org/10.1007/s10343-022-00818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00818-9

Keywords

Navigation