Skip to main content
Log in

Physiological Performance of Dill Plants Affected by Seed Pretreatments Under Salt Stress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The impacts of seed polymer coating and priming with gibberellic acid (GA3: 1 mM) and salicylic acid (SA: 1 mM) on dill plants (Anethum graveolens L.) were examined under different levels of salinity (non-saline, 4, 8 and 12 dS/m NaCl). The sodium content, H2O2 generation, malondialdehyde (MDA), ascorbic acid and α‑tocopherol and endogenous SA were increased, while potassium, calcium, magnesium, K+/Na+ ratio, membrane stability (MSI) and endogenous GA3 were decreased with increasing salinity. Total phenol content and antioxidant activity were elevated up to 8 dS/m and thereafter considerably declined. A reduction in seed yield, essential oil percentage and yield was occurred under severe salinity. Seed priming with GA3 and SA reduced sodium and oxidative stress, but enhanced nutrient content, MSI and endogenous GA3 and SA. Antioxidants, seed and essential oil production were improved in response to GA3 and particularly SA. The highest sodium and oxidative stress and the lowest nutrients, MSI, antioxidants, endogenous GA3 and SA, and seed and essential oil yields under different levels of salinity were recorded for plants from polymer-coated seeds. Therefore, seed priming with GA3 and particularly SA could be used as a potential tool to improve antioxidative activity and essential oil production in dill plants under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasi GH, Akhtar J, Ahmad R, Jamil M, Anwar-Ul-Haq M, Ali S, Ijaz M (2015) Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regul 76:111–125

    Article  CAS  Google Scholar 

  • Abido WAE, Allem A, Zsombik L, Attila N (2019) Effect of gibberellic acid on germination of six wheat cultivars under salinity stress levels. Asian J Biol Sci 12:51–60

    Article  CAS  Google Scholar 

  • Afzal I, Basra SMA, Ahmad N, Farooq M (2005) Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno De Pesquisa: Série Biol 17:95–109 (http://hdl.handle.net/1807/5388)

    Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Ramırez A, Rodrıguez D, Reyes D, Angel Jimenez J, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Azeem M, Abbasi MW, Qasim M, Ali H (2018) Salicylic acid seed priming modulates some biochemical parameters to improve germination and seedling growth of salt stressed wheat (Triticum aestivum L.). Pak J Bot 51:385–391

    Google Scholar 

  • Bastam N, Baninasab B, Ghobadi C (2013) Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul 69:275–284

    Article  CAS  Google Scholar 

  • Belkhadia A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaïbi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf 73:1004–1011

    Article  Google Scholar 

  • Bhat NR, Suleiman MK, Al-Menaie H, Al-Ali EH, AL-Mulla L, Christopher A, Lekha VS, Ali SI, George P (2009) Polyacrylamide polymer and salinity effects on water requirement of conocarpus lancifolius and selected properties of sandy loam soil. Eur J Sci Res 25:549–558

    Google Scholar 

  • Bose SK, Yadav RK, Mishra S, Sangwan RS, Singh AK, Mishra B, Srivastava AK, Sangwan NS (2013) Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol Biochem 66:150–158

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stress. In: Gruissem W, Jones R (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Cakmak I, Horst J (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Cantabella D, Piqueras A, Acosta-Motos JR, Bernal-Vicente A, Hernández JA, Díaz-Vivancos P (2017) Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem 115:484–496

    Article  CAS  PubMed  Google Scholar 

  • Cao XY, Li CG, Miao Q, Zheng ZJ, Jiang JH (2011) Molecular cloning and expression analysis of a leaf-specific expressing 3‑hydroxy-3-methylglutaryl-CoA (HMGCoA) reductase gene from Michelia chapensis Dandy. J Med Plants Res 5:3868–3875

    CAS  Google Scholar 

  • Chauhan A, AbuAmarah BA, Kumar A, Verma JS, Ghramh HA, Khan KA, Ansari MJ (2019) Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi J Biol Sci 26:1298–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci 2:70

    Article  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2017) Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol Environ Saf 137:64–70

    Article  CAS  PubMed  Google Scholar 

  • Garchery C, Gest N, Do PT, Alhagdow M, Baldet P, Menard G, Rothan C, Massot C, Gautier H, Aarrouf J et al (2013) A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. Plant Cell Environ 36:159–175

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Abdoli S (2021) Improving ATPase and PPase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles. Plant Cell Rep 40:559–573

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Farhangi-Abriz S (2018) Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicol Environ Saf 166:18–25

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Nikpour-Rashidabad N (2017) Seed pretreatment and salt tolerance of dill: osmolyte accumulation, antioxidant enzymes activities and essential oil production. Biocatal Agric Biotechnol 12:30–35

    Article  Google Scholar 

  • Ghassemi-Golezani K, Samea-Andabjadid S (2022) Exogenous cytokinin and salicylic acid improve amino acid content and composition of Faba Bean seeds under salt stress. Gesunde Pflanz 74:935–945

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani K, Zehtab-Salmasi S, Dastborhan S (2011) Changes in essential oil content of dill (Anethum graveolens) organs under salinity stress. J Med Plant Res 5:3142–3145

    CAS  Google Scholar 

  • Ghassemi-Golezani K, Ghassemi S, Zehtab Salmasi S (2018) Changes in essential oil-content and composition of ajowan (Carum copticum L.) seeds in response to growth regulators under water stress. Sci Hortic 231:219–226

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani K, Nikpour-Rashidabad N, Samea-Andabjadid S (2022) Application of growth promoting hormones alters the composition and antioxidant potential of dill essential oil under salt stress. Sci Rep 12:14349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guangwu Z, Xuwen J (2014) Roles of gibberellin and auxin in promoting seed germination and seedling vigor in Pinus massoniana. Sci 60:367–373

    Article  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. J Exp Bot 52:1721–1730

    CAS  PubMed  Google Scholar 

  • Hsu YT, Kao CH (2007) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298:231–241

    Article  CAS  Google Scholar 

  • Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jami F, Mehraban A, Ganjali HR (2015) The effect of water shortage and foliar application of salicylic acid on quantitative and qualitative performance of cumin herb. Indian J Sci Technol 8:1–8

    Article  Google Scholar 

  • Jampeetong A, Brix H (2009) Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquat Bot 91:181–186

    Article  CAS  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy S, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 6:726–734

    Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  CAS  PubMed  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konyalιoglu S, Sağlam H, Kιvçak B (2005) α‑tocopherol, flavonoid, and phenol contents and antioxidant activity of Ficus carica leaves. Pharm Biol 43:683–686

    Article  Google Scholar 

  • Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Zmienko A, Lutts S, Quinet M (2015) Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113

    Article  CAS  PubMed  Google Scholar 

  • Levent T, Cengiz K, Murat D, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    Article  Google Scholar 

  • Li XJ, Meng FJ (1996) Study on the photoperiodic-induced flowering in soybean: changes of plant hormones and assimilates of the first leaves. J China Agric Univ 1:35–39

    Google Scholar 

  • Liu J, Li L, Yuan F, Chen M (2019) Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. Plant Signaling Behav. https://doi.org/10.1080/15592324.2019.1644595

    Article  Google Scholar 

  • Mabudi Bilasvar H, Ghassemi-Golezani K, Dabbagh Mohammadi Nassab A (2022) Seed development, oil accumulation and fatty acid composition of drought stressed rapeseed plants affected by salicylic acid and putrescine. Gesunde Pflanz 74:333–345

    Article  CAS  Google Scholar 

  • Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250:3–19

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Misra R, Mariam A, Yusuf K, Yusuf L (2014) Salicylic acid alters antioxidant and phenolics metabolism in Catharanthus roseus grown under salinity stress. Afr J Tradit Complement Altern Med 11:118–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Nabati J, Kafi M, Nezami A, Moghaddam PR, Ali M, Mehrjerdi MZ (2011) Effect of salinity on biomass production and activities of some key enzymatic antioxidants in Kochia (Kochia scoparia). Pak J Bot 43:539–548

    CAS  Google Scholar 

  • Omaye ST, Turnbull JD, Sauberilich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol 62:3–11

    Article  CAS  PubMed  Google Scholar 

  • Poór P, Czékus Z, Tari I, Ördög A (2019) The multifaceted roles of plant hormone salicylic acid in endoplasmic reticulum stress and unfolded protein response. Int J Mol Sci 20:5842

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhaman MS, Imran S, Rauf F, Khatun M, Baskin CC, Murata Y, Hasanuzzaman M (2021) Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plants 10:37

    Article  CAS  Google Scholar 

  • Samea-Andabjadid S, Ghassemi-Golezani K, Nasrollahzadeh S, Najafi N (2018) Exogenous salicylic acid and cytokinin alter sugar accumulation, antioxidants and membrane stability of faba bean. Acta Biol Hung 69:86–96

    Article  CAS  PubMed  Google Scholar 

  • Sharafzadeh S, Zare M (2011) Influence of growth regulators on growth and secondary metabolites of some medicinal plants from Lamiaceae family. Adv Environ Biol 5:2296–2302

    CAS  Google Scholar 

  • Slama I, M’Rabet R, Ksouri R, Talbi O, Debez A, Abdelly CH (2015) Water deficit stress applied only or combined with salinity affects physiological parameters and antioxidant capacity in Sesuvium portulacastrum. Flora 213:69–76

    Article  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analyses: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    Article  CAS  Google Scholar 

  • Szczerba MW, Britto DT, Kronzucker HJ (2009) K+ transport in plants: physiology and molecular biology. J Plant Physiol 166:447–466

    Article  CAS  PubMed  Google Scholar 

  • Vanangamudi K, Srimathi P, Natarajan N, Bhaskaran M (2003) Current scenario of seed coating polymer. In: Proc. of ICAR-short course on seed hardening and pelleting technologies for rainfed/ garden land ecosystems New Delhi, pp 80–100

    Google Scholar 

  • Vob U, Bishopp A, Farcot E, Bennett MJ (2014) Modelling hormonal response and development. Trends Plant Sci 19:311–319

    Article  Google Scholar 

  • Wang S, Xu L, Li G, Chen P, Xia K, Zhou X (2002) An ELISA for the determination of salicylic acid in plants using a monoclonal antibody. Plant Sci 162:529–535

    Article  CAS  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younesi O, Moradi A (2015) Effect of priming of seeds of Medicago sativa ‘bami’ with gibberellic acid on germination, seedlings growth and antioxidant enzymes activity under salinity stress. J Hortic Res 22:167–174

    Article  Google Scholar 

  • Zhu G, An L, Jiao X, Chen X, Zhou G, McLaughlin N (2019) Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chil J Agric Res 79:415–424

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support of this work by the University of Tabriz.

Author information

Authors and Affiliations

Authors

Contributions

Neda Nikpour-Rashidabad: Experimental work, data analysis, initial writing. Kazem Ghassemi-Golezani: Experimental design, supervision and writing. Samira Samea-Andabjadid: Data analysis, writing help

Corresponding author

Correspondence to Kazem Ghassemi-Golezani.

Ethics declarations

Conflict of interest

N. Nikpour-Rashidabad, K. Ghassemi-Golezani and S. Samea-Andabjadid declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikpour-Rashidabad, N., Ghassemi-Golezani, K. & Samea-Andabjadid, S. Physiological Performance of Dill Plants Affected by Seed Pretreatments Under Salt Stress. Gesunde Pflanzen 75, 1833–1842 (2023). https://doi.org/10.1007/s10343-022-00815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00815-y

Keywords

Navigation