Skip to main content

Advertisement

Log in

Effects of Ascorbic and Oxalic Acids on Cucumber Seedling Growth and Quality Under Mildly Limey Soil Conditions

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Limey soil/high soil pH is a common stressor for cucumbers which limits growth and development. Limey soil reduces iron (Fe) availability and leads to Fe chlorosis. Thus, the acquisition of Fe by plants is limited under lime-stress conditions. Plants which release organic acids can acquire Fe by adjusting the soil pH. Thus, exogenous organic acid treatment may alleviate limey soil stress. Furthermore, treatment with antioxidants may alleviate stress factors. In the present experiment, the effects of ascorbic (AsA) and oxalic acids (OA) on cucumber seedlings under lime-stress conditions were evaluated. Cucumber seedlings were grown under mildly limey soil conditions (pH = 8, CaCO3 = 10%). The treatments Fe-EDDHA, 50 and 100 ppm ASA, and 3 and 10 mmol OA were applied at sowing and repeated weekly. Control plants did not receive Fe-EDDHA, AsA, and OA application. Seedlings were evaluated 30 days after sowing. AsA and OA treatments significantly affected cucumber seedlings. We evaluated the Dickson quality index parameter to compare seedling quality among the treatments, and results showed that Fe-EDDHA-treated seedlings had the highest value followed by 100 ppm AsA and 3 mmol OA. AsA and OA treatments increased the xylem conduit diameter compared to control and Fe-EDDHA treatments. The 3 mmol OA and 100 mmol AsA treatments triggered lignification. The highest cortical cell diameter was found in 100 ppm AsA followed by 3 mmol OA treatments. As a result, we suggest that AsA and OA can be used under high soil pH conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Álvarez-Fernández A, López-Millán AF (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49(5):471–482

    Article  PubMed  Google Scholar 

  • Ahammed GJ, Wu M, Wang Y, Yan Y, Mao Q, Ren J, Ma R, Liu A, Chen S (2020) Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci Hortic 265:109205

    Article  CAS  Google Scholar 

  • Antonova GF, Chaplygina IA, Varaksina TN, Stasova VV (2005) Ascorbic acid and xylem development in trunks of the Siberian larch trees. Russ J Plant Physiol 52(1):83–92

    Article  CAS  Google Scholar 

  • Aras S, Keles H (2019) Responses of apple plants to drought stress. J Agric Stud 7(3):154–160

    Google Scholar 

  • Aras S, Arıkan Ş, İpek M, Eşitken A, Pırlak L, Dönmez MF, Turan M (2018) Plant growth promoting rhizobacteria enhanced leaf organic acids, FC‑R activity and Fe nutrition of apple under lime soil conditions. Acta Physiol Plant 40(6):120

    Article  Google Scholar 

  • Aras S, Keles H, Bozkurt E (2021) Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Sci Hortic 281:109967

    Article  CAS  Google Scholar 

  • Aras S, Keles H, Bozkurt E (2022) Iron deficiency impacts chlorophyll biosynthesis, leaf cell expansion, xylem development and physiology of Prunus persica grafted onto rootstocks Garnem and GF 677. Zemdirbyste-Agriculture 109(1):55–62

    Article  Google Scholar 

  • Arıkan Ş, Eşitken A, İpek M, Aras S, Şahin M, Pırlak L, Dönmez MF, Turan M (2018) Effect of plant growth promoting rhizobacteria on Fe acquisition in peach (Prunus persica L) under calcareous soil conditions. J Plant Nutr 41(17):2141–2150

    Article  Google Scholar 

  • Awad AA, Sweed AA, Rady MM, Majrashi A, Ali EF (2021) Rebalance the nutritional status and the productivity of high CaCO3-stressed sweet potato plants by foliar nourishment with zinc oxide nanoparticles and ascorbic acid. Agronomy 11(7):1443

    Article  CAS  Google Scholar 

  • Bityutskii NP, Yakkonen KL, Petrova AI, Lukina KA, Shavarda AL (2019) Calcium carbonate reduces the effectiveness of soil-added monosilicic acid in cucumber plants. J Soil Sci Plant Nutr 19(3):660–670

    Article  CAS  Google Scholar 

  • Bortolami G, Farolfi E, Badel E, Burlett R, Cochard H, Ferrer N, King A, Lamarque LJ, Lecomte P, Marchesseau-Marchal M, Pouzoulet J, Torres-Ruiz JM, Trueba S, Delzon S, Gambetta GA, Delmas CEL (2021) Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity. J Exp Bot 72(10):3914–3928

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Chen W, Zhuge Y, Song Y, Hu G, Wan Y, Liu F, Li X (2018) Effect of application of exogenous nitric oxide at different critical growth stages in alleviating Fe deficiency chlorosis of peanut growing in calcareous soil. J Plant Nutr 41(7):867–887

    Article  CAS  Google Scholar 

  • Donnini S, Castagna A, Ranieri A, Zocchi G (2009) Differential responses in pearand quince genotypes induced by Fe deficiency and bicarbonate. J Plant Physiol 166:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Duan C, Wu S, Sang Y, Bahetibieke W, Ru J, Song J, Cui X (2019) Exogenous succinic acid mediates responses of Larix olgensis A. Henry to cadmium stress. Int J Phytoremediation 21(8):742–751

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghahremani Z, Mikaealzadeh M, Barzegar T, Ranjbar ME (2021) Foliar application of ascorbic acid and gamma aminobutyric acid can improve important properties of deficit irrigated cucumber plants (Cucumis sativus cv. Us). Gesunde Pflanzen 73(1):77–84

    Article  CAS  Google Scholar 

  • Hernández-Apaolaza L, Escribano L, Zamarreño ÁM, García-Mina JM, Cano C, Carrasco-Gil S (2020) Root silicon addition induces Fe deficiency in cucumber plants, but facilitates their recovery after Fe resupply. A comparison with si foliar sprays. Front Plant Sci 11:580552

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular, vol 347. Agricultural Experiment Station, University of California, Berkeley

    Google Scholar 

  • Imran, Amanullah, Ortas I (2022) Agronomic practices improved cucumber productivity, nutrients uptake and quality. Gesunde Pflanzen 74:595–602. https://doi.org/10.1007/s10343-022-00634-1

    Article  CAS  Google Scholar 

  • İpek M, Aras S, Arıkan Ş, Eşitken A, Pırlak L, Dönmez MF, Turan M (2017) Root plant growth promoting rhizobacteria inoculations increase ferric chelate reductase (FC-R) activity and Fe nutrition in pear under calcareous soil conditions. Sci Hortic 219:144–151

    Article  Google Scholar 

  • Jafari SR, Arvin SMJ, Kalantari KM (2015) Response of cucumber (Cucumis sativus L.) seedlings to exogenous silicon and salicylic acid under osmotic stress. Acta Biol Szeged 59(1):25–33

    Google Scholar 

  • Jensen WA (1962) Botanical histochemistry: principles and practice. W.H. Freeman & Co, San Francisco

    Google Scholar 

  • Kaya C, Akram NA, Ashraf M (2019) Influence of exogenously applied nitric oxide on strawberry (Fragaria × ananassa) plants grown under iron deficiency and/or saline stress. Physiol Plant 165(2):247–263

    Article  CAS  PubMed  Google Scholar 

  • Li P, Zheng X, Liu Y, Zhu Y (2014) Pre-storage application of oxalic acid alleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress. Food Chem 142:72–78

    Article  CAS  PubMed  Google Scholar 

  • Li P, Yin F, Song L, Zheng X (2016) Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid. Food Chem 202:125–132

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Jiang N, Mei X, Zu Y, Li Z, Qin L, Li B (2022) Effects of lime and oxalic acid on antioxidant enzymes and active components of Panax notoginseng under cadmium stress. Sci Rep 12(1):1–13

    Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Maksoud MA, Saleh MA, El-Shamma MS, Fouad AA (2009) The beneficial effect of biofertilizers and antioxidants on olive trees under calcareous soil conditions. World J Agric Sci 5(3):350–352

    CAS  Google Scholar 

  • Malenčić DJ, Vasić D, Popović M, Dević D (2004) Antioxidant systems in sunflower as affected by oxalic acid. Biol plant 48(2):243–247

    Article  Google Scholar 

  • Malta PG, Arcanjo-Silva S, Ribeiro C, Campos NV, Azevedo AA (2016) Rudgea viburnoides (Rubiaceae) overcomes the low soil fertility of the Brazilian Cerrado and hyperaccumulates aluminum in cell walls and chloroplasts. Plant Soil 408(1):369–384

    Article  CAS  Google Scholar 

  • Merwad ARM, Abdel-Fattah MK (2015) Effect of some soil amendments and foliar spray of salicylic and ascorbic acids on sorghum under saline calcareous soil conditions. Int J Soil Sci 10(1):28

    Article  Google Scholar 

  • Mondal K, Sharma NS, Malhotra SP, Dhawan K, Singh R (2004) Antioxidant systems in ripening tomato fruits. Biol plant 48(1):49–53

    Article  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (1990) Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 94(2):607–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naz H, Akram NA, Ashraf M (2016) Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water-deficit conditions. Pak J Bot 48(3):877–883

    CAS  Google Scholar 

  • O’Brien T, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59(2):368–373

    Article  Google Scholar 

  • Pii Y, Penn A, Terzano R, Crecchio C, Mimmo T, Cesco S (2015) Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiol Biochem 87:45–52

    Article  CAS  PubMed  Google Scholar 

  • Ramírez L, Bartoli CG, Lamattina L (2013) Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. J Exp Bot 64(11):3169–3178

    Article  PubMed  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. USDA agric. handbook, vol 60. USDA, Washington D. C.

    Google Scholar 

  • Sadak MS, Orabi SA (2015) Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. Int J Chem Tech Res 8:333–345

    CAS  Google Scholar 

  • Shah T, Latif S, Khan H, Munsif F, Nie L (2019) Ascorbic acid priming enhances seed germination and seedling growth of winter wheat under low temperature due to late sowing in Pakistan. Agronomy 9(11):757

    Article  CAS  Google Scholar 

  • Shi DC, Yin SJ, Yang GH, Zhao K (2002) Citric acid accumulation in an alkali—tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Bot Sin 44:537–540

    CAS  Google Scholar 

  • Shu-Hua G, Yan-Jie N, Heng Z, Ning H, Yuan-Peng D (2018) Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks. Sci Hortic 227:255–260

    Article  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. J Plant Physiol 53:258–260

    Article  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. CRC Crit Rev Plant Sci 19(4):267–290

    Article  CAS  Google Scholar 

  • Sperdouli I, Moustakas M (2012) Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J Plant Physiol 169(6):577–585

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Feng C, Zhang A, Zhang Y, Chang D, Wang Y, Ma Q (2019) The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea. World J Microbiol Biotechnol 35(2):1–7

    Article  Google Scholar 

  • Torres-Ruiz JM, Cochard H, Fonseca E, Badel E, Gazarini L, Vaz M (2017) Differences in functional and xylem anatomical features allow Cistus species to co-occur and cope differently with drought in the Mediterranean region. Tree Physiol 37(6):755–766

    Article  PubMed  Google Scholar 

  • Toselli M, Marangoni B, Tagliavini M (2000) Iron content in vegetative and reproductive organs of nectarine trees in calcareous soils during the development of chlorosis. Eur J Agron 13:279–286

    Article  CAS  Google Scholar 

  • Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187(2):273–285

    Article  CAS  PubMed  Google Scholar 

  • Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Biol 49(1):585–609

    Article  CAS  Google Scholar 

  • Zhang X, Yu HJ, Zhang XM, Yang XY, Zhao WC, Li Q, Jiang WJ (2016) Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. Plant Physiol Biochem 108:222–230

    Article  CAS  PubMed  Google Scholar 

  • Zhang XW, Dong YJ, Qiu XK, Hu GQ, Wang YH, Wang QH (2012) Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil. Plant Soil Environ 58(3):111–120

    Article  CAS  Google Scholar 

  • Zheng X, Tian S (2006) Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chem 96(4):519–523

    Article  CAS  Google Scholar 

  • Zheng J, Li S, Xu Y, Zheng X (2019) Effect of oxalic acid on edible quality of bamboo shoots (Phyllostachys prominens) without sheaths during cold storage. Lwt 109:194–200

    Article  CAS  Google Scholar 

  • Zheng X, Tian S, Meng X, Li B (2007) Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature. Food Chem 104(1):156–162

    Article  CAS  Google Scholar 

  • Zhixin N, Xiaodong L, Lina S, Tieheng S (2013) Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead. Int J Phytoremediation 15(7):690–702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Aras.

Ethics declarations

Conflict of interest

G.A. Çoban and S. Aras declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çoban, G.A., Aras, S. Effects of Ascorbic and Oxalic Acids on Cucumber Seedling Growth and Quality Under Mildly Limey Soil Conditions. Gesunde Pflanzen 75, 1925–1932 (2023). https://doi.org/10.1007/s10343-022-00809-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00809-w

Keywords

Navigation