Skip to main content

Advertisement

Log in

Role of Plant Secondary Metabolites and Phytohormones in Drought Tolerance: A Review

  • Review Article / Übersichtsbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Human activity has contributed to global warming both in the past and in the present, resulting in drought stress that have an impact on both plants and animals. Because plants are less able to withstand drought stress, plant growth and productivity are reduced. In order to lessen the impact of drought stress on plants, it is essential to develop a plant feedback mechanism for drought resistance. Drought is also one of the major abiotic stresses resulting from moisture deficit. It adversely affects plant growth and is one of the major causes of reduced crop yield under field conditions. In a nutshell, enhancing the root system, leaf structure, osmotic balance, comparative water contents, and stomatal adjustment are thought to be the most important characteristics for crop plants to resist drought. In response to drought stress, plants possess acclimation mechanisms that involve secondary metabolites (SMs) and phytohormones (PHs) to alter physiological, biochemical and molecular responses. Plant natural compounds such as flavonoid, polyphenol, isoprene (volatile) and isoprenoid (non-volatile) are the most commonly studied SMs under drought stress conditions. The plant accumulates SMs as an adaptive response that performs an essential role as a powerful antioxidant, synthesizing and transporting metabolites and enzymes, stabilizing cellular components, signaling and regulating genes. Usually, SMs interact with PHs to overcome constraints of drought stress. Synthesis and accumulation of SMs can be manipulated using the in-vitro culture technique to a preparedly enhanced level for drought tolerance in plants. The PHs such as abscisic acid (ABA), ethylene, auxins, cytokinins, gibberellic acid, salicylic acid, jasmonic acid, brassinosteroids and strigolactones play a vital role in drought stress signaling pathways of plants. The ABA is a major hormone that plays a key role in drought stress tolerance. The PHs, reduce transpiration losses through closing stomata, promoting leaf senescence and reducing leaf area. In addition, ABA enhances root growth, increases cytosolic Ca2+, depolarises the membrane and activates the gene responsible for avoidance of water stress. The present review briefly highlights and critically assesses the roles of SMs and PHs in drought tolerance, as evidenced by recent successes in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

ACC:

1‑aminoacyclopropane 1-carboxylate

ACO:

ACC oxidase

ACS:

ACC synthase

BRs:

Brassinosteroids

CAD:

Cinnamyl alcohol dehydrogenase

CAT:

Catalase

DSP:

Desmoplakin

SOD:

Superoxide dismutase

CKs:

Cytokinins

GABA:

γ-aminobutyric acid

GAs:

Gibberellins

GOMV:

4′-O-β-D-glucosyl-5-O-methylvisamminol

GR:

Glutathione reductase

HSP:

Heat shock protein

IAA:

Indole-3-acetic acid

JA:

Jasmonic acid

JAs:

Jasmonates

LEA:

Late embryogenesis abundant

MDHA:

Monodehydroascorbate

MDHAR:

Monodehydroascorbate reductase

PAL:

Phenylalanine ammonia lyase

PHs:

Phytohormones

POD:

Peroxidase

POG:

Prim-O-glucosylcimifugin

PPO:

Polyphenol oxidase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SLs:

Strigolactones

SMs:

Secondary metabolites

References

  • Abobatta WF (2020) Plant responses and tolerance to combined salt and drought stress. In: Salt and drought stress tolerance in plants. Springer, Cham, pp 17–52

    Google Scholar 

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2021) Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubbles and macrobubbles. J Soil Sci Plant Nutri 21(1):389–403

    CAS  Google Scholar 

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2022) Effect of biosorptive removal of cadmium ions from hydroponic solution containing indigenous garlic peel and mercerized garlic peel on lettuce productivity. Sci Hortic 293:110727

    CAS  Google Scholar 

  • Agha MS, Abbas MA, Sofy MR, Haroun SA, Mowafy AM (2021) Dual inoculation of Bradyrhizobium and Enterobacter alleviates the adverse effect of salinity on Glycine max seedling. Not Bot Horti Agrobot Clujnapoca 49(3):12461

    CAS  Google Scholar 

  • Ahmad G, Khan AA, Mohamed HI (2021) Impact of the low and high concentrations of fly ash amended soil on growth, physiological response and yield of pumpkin (Cucurbita moschata Duch. Ex Poiret L.). Environ Sci Pollut Res 28:17068–17083

    CAS  Google Scholar 

  • Akladious SA, Mohamed HI (2017) Physiological role of exogenous nitric oxide in improving performance, yield and some biochemical aspects of sunflower plant under zinc stress. Acta Biol Hung 68(1):101–114

    CAS  PubMed  Google Scholar 

  • Aktas LY, Dagnon S, Gurel A, Gesheva E, Edreva A (2009) Drought tolerance in cotton: Involvement of non-enzymatic ROS-scavenging compounds. J Agron Crop Sci 195:247–253

    Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Google Scholar 

  • Al-Hakimi AM (2006) Counteraction of drought stress on soybean plants by seed soaking in salicylic acid. Int J Bot 2:421–426

    CAS  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    PubMed  PubMed Central  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI (2017) Association of increase in some biochemical components with flax resistance to powdery mildew. Gesunde Pflanz 69(1):47–52

    CAS  Google Scholar 

  • André CM, Schafleitner R, Legay S, Lefèvre I, Aliaga CAA, Nomberto G, Hoffmann L, Hausman JF, Larondelle Y, Evers D (2009) Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 70:1107–1116

    PubMed  Google Scholar 

  • Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S (2020) Salicylic acid in relation to other PHs in plant: a study towards physiology and signal transduction under challenging environment. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2020.104040

  • Arraes FBM, Beneventi MA, de Sa MEL, Paixao JFR, Albuquerque EVS, Marin SRR, Purgatto E, Nepomuceno AL, Grossi-de-Sa MF (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15:213

    PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf MA, Iqbal M, Rasheed R, Hussain I, Riaz M, Arif MS (2018) Environmental stress and secondary metabolites in plants: an overview. In: Plant metabolites and regulation under environmental stress. Academic Press, pp 153–167

    Google Scholar 

  • Ashry NA, Ghonaim MM, Mohamed HI, Mogazy AM (2018) Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. Plant Physiol Biochem 130:224–234

    CAS  PubMed  Google Scholar 

  • Bala S, Asthir B, Bains N (2016) Syringaldazine peroXidase stimulates lignification by enhancing polyamine catabolism in wheat during heat and drought stress. Cereal Res Commun 44:561–571

    CAS  Google Scholar 

  • Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N et al (2018) Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS ONE 13:e193517. https://doi.org/10.1371/journal.pone.0193517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429

    CAS  PubMed  Google Scholar 

  • Brunetti C, Federico S, Massimiliano T (2019) Review: ABA, flavonols and the evolvability of land plants. Plant Sci 280:448–454

    CAS  PubMed  Google Scholar 

  • Cakir R, Cebi U (2010) The effect of irrigation scheduling and water stress on the maturity and chemical composition of Virginia tobacco leaf. Field Crop Res 119:269–276

    Google Scholar 

  • Chen Q, Qi WB, Reiter RJ, Wei W, Wang B (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166:324–328

    CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75. https://doi.org/10.1242/jeb.089938

    Article  CAS  PubMed  Google Scholar 

  • Danquah A, Zelicourt AD, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic. Biotechnol Adv 32:40–52

    CAS  PubMed  Google Scholar 

  • Dawood MFA (2022) Chapter 9—Melatonin: an elicitor of plant tolerance under prevailing environmental stresses. In: Emerging plant growth regulators in agriculture. Roles in stress tolerance, pp 245–286 https://doi.org/10.1016/B978-0-323-91005-7.00002-3

    Chapter  Google Scholar 

  • Dawood MF, Abu-Elsaoud AM, Sofy MR, Mohamed HI, Soliman MH (2022a) Appraisal of kinetin spraying strategy to alleviate the harmful effects of UVC stress on tomato plants. Environ Sci Pollut Res 8:1–21

    Google Scholar 

  • Dawood MFA, Zaid A, Latef AAHA (2022b) Salicylic acid spraying-induced resilience strategies against the damaging impacts of drought and/or salinity stress in two varieties of Vicia faba L. Seedlings. J Plant Growth Regul 41:1919–1942

    CAS  Google Scholar 

  • De Ollas C, Dodd IC (2016) Physiological impacts of ABA-JA interactions under water-limitation. Plant Mol Biol 91:641–650. https://doi.org/10.1007/s11103-016-0503-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306. https://doi.org/10.1111/j.1399-3054.2012.01659.x

    Article  CAS  PubMed  Google Scholar 

  • Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK et al (2022) Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci 23:2690. https://doi.org/10.3390/ijms23052690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Toit A (2018) Attracting bacteria in the soil. Nat Rev Microbiol 16(3):122

    PubMed  Google Scholar 

  • Edreva AM, Velikova V, Tsonev T (2007) Phenylamides in plants. Russ J Plant Physiol 54:287–301

    CAS  Google Scholar 

  • Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol Special Issue 34:67–78

    CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Abdelazeem AS, Youssef R, Safwat G (2019) GC-MS analysis, antioxidant, antimicrobial and anticancer activities of extracts from Ficus sycomorus fruits and leaves. Not Bot Horti Agrobot Clujnapoca 47(2):493–505

    CAS  Google Scholar 

  • El-Mahdy OM, Mohamed HI, Mogazy AM (2021) Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd and Pb contaminated soil and their physiological effects on Vicia faba L. Environ Sci Pollut Res 28(47):67608–67631

    CAS  Google Scholar 

  • El-Rahman ASS, Mazen MM, Mohamed HI, Mahmoud NM (2012) Induction of defense related enzymes and phenolic compounds in lupine (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur J Plant Pathol 134:105–116

    Google Scholar 

  • El-Sheshtawy HS, Mahdy HM, Sofy AR, Sofy MR (2022) Production of biosurfactant by Bacillus megaterium and its correlation with lipid peroxidation of Lactuca sativa. Egyptian J Petrol 31(2):1–6

    Google Scholar 

  • Eppel A, Rachmilevitch S (2016) Photosynthesis and photoprotection under drought in the annual desert plant Anastatica hierochuntica. Photosynt 54:143–147

    Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    CAS  PubMed  Google Scholar 

  • Fang L, Su L, Sun X, Li X, Sun M, Karungo SK, Fang S, Chu J, Li S, Xin H (2016) Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67:2829–2845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31(5):937–945

    CAS  Google Scholar 

  • Fouda HM, Sofy MR (2022) Effect of biological synthesis of nanoparticles from Penicillium chrysogenum as well as traditional salt and chemical nanoparticles of zinc on canola plant oil productivity and metabolic activity. Egyptian J Chem 65(3):1–2

    Google Scholar 

  • Gaafar AA, Ali SI, Shawadfy MAE, Salama ZA, Sekara A, Ulrichs C, Abdelhamid MT (2020) Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth and productivity of the common bean under water stress conditions. Plants 9:627

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-Calderón M, Pons-Ferrer T, Mrazova A, Pal’ove-Balang P, Vilkova M, Pérez-Delgado CM, Vega JM, Eliášová A, Repčák M, Márquez AJ (2015) Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front Plant Sci 6:760

    PubMed  PubMed Central  Google Scholar 

  • Ghaffari H, Tadayon MR, Nadeem M, Razmjoo J, Cheema M (2019) Foliage applications of jasmonic acid modulates the antioxidant defense under water deficit growth in sugar beet. Span J Agric Res 17:805

    Google Scholar 

  • Ghonaim MM, Mohamed HI, Omran AAA (2021) Evaluation of wheat salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol 68:227–242

    CAS  Google Scholar 

  • Giordano D, Provenzano S, Ferrandino A, Vitali M, Pagliarani C, Roman F, Cardinale F, Castellarin SD, Schubert A (2016) Characterization of a multifunctional caffeoyl-CoA O‑methyltransferase activated in grape berries upon drought stress. Plant Physiol Biochem 101:23–32

    CAS  PubMed  Google Scholar 

  • Gnanasekaran N, Kalavathy S (2017) Drought stress signal promote the synthesis of more reduced phenolic compounds (chloroform insoluble fraction) in Tridax procumbens. Free Rad Antioxid 7:128–136

    Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2010) Water and agricultural sustainability strategies. CRC Press, p 259

    Google Scholar 

  • Guo R, Shi L, Jiao Y, Li M, Zhong X, Gu F, Liu Q, Xia X, Li H (2018) Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. Aob Plants. https://doi.org/10.1093/aobpla/ply016

  • Hai NN, Chuong NN, Tu NHC, Kisiala A, Hoang XLT, Thao NP (2020) Role and regulation of cytokinins in plant response to drought stress. Plants 9:422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes S (2019) BRacing for water stress: brassinosteroids signaling promotes drought survival in wheat. Plant Physiol 180:18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang XLT, Nguyen NC, Nguyen YNH, Watanabe Y, Tran LSP, Thao NP (2020) The soybean GmNAC019 transcription factor mediates drought tolerance in Arabidopsis in an abscisic acid-dependent manner. Int J Mol Sci 21:286

    CAS  Google Scholar 

  • Hu W, Ren T, Meng F, Cong R, Li X, White PJ et al (2019) Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coordination of CO2 diffusion and carboxylation. Physiol Plant 167:418–432. https://doi.org/10.1111/ppl.12919

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y (2018) The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol Plant 11:970–982

    CAS  PubMed  Google Scholar 

  • Hunter LJ, Westwood JH, Heath G, Macaulay K, Smith AG, MacFarlane SA, Palukaitis P, Carr JP (2013) Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis. Plos One 8:66530

    Google Scholar 

  • Hussain T, Javed M, Shaikh S, Tabasum B, Hussain K, Moh Ansari Khan SA (2021) Enhancement of plant secondary metabolites using fungal endophytes. In: Shahnawaz M (ed) Biotechnological approaches to enhance plant secondary metabolites. Recent trends and future prospects. CRC Press, Taylor and Francis, Boca Raton, pp 61–70 https://doi.org/10.1201/9781003034957-4

    Chapter  Google Scholar 

  • Hussien HA, Salem H, Mekki BED (2015) Ascorbate-glutathione-α-tocopherol triad enhances antioxidant systems in cotton plants grown under drought stress. Int J Chem Tech Res 8:1463–1472

    CAS  Google Scholar 

  • Ibrahim W, Zhu YM, Chen Y, Qiu CW, Zhu S, Wu F (2019) Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiol Plant 165:343–355

    CAS  PubMed  Google Scholar 

  • Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Díaz GA, Abbas A, Parveen A, Atiq MN, Alshaya H, Zin E‑ATK, Fahad S (2022) Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Front Plant Sci 12:799318. https://doi.org/10.3389/fpls.2021.799318

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaafar HZ, Ibrahim MH, Fakri MNF (2012) Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules 17:7305–7322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang G, Chang SH, Um TY, Lee S, Kim JK, Choi YD (2017) Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep 7:10212

    PubMed  PubMed Central  Google Scholar 

  • Jha Y, Mohamed HI (2022) Plant secondary metabolites as a tool to investigate biotic stress tolerance in plants: a review. Gesunde Pflanz. https://doi.org/10.1007/s10343-022-00669-4

    Article  Google Scholar 

  • Jones B, Gunneras SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juliano FF, Alvarenga JFR, Lamuela-Raventos RM, Massarioli AP, Lima LM, Santos RC, Alencar SM (2020) Polyphenol analysis using high-resolution mass spectrometry allows differentiation of drought tolerant peanut genotypes. J Sci Food Agric 100:721–731

    CAS  PubMed  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y, Guo T (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res 11:6066–6079

    CAS  PubMed  Google Scholar 

  • Kareem F, Rihan H, Fuller MP (2019) The effect of exogenous applications of salicylic acid on drought tolerance and up-regulation of the drought response regulation of Iraqi wheat. J Crop Sci Biotechnol 22:37–45

    Google Scholar 

  • Karunanithi PS, Berrios DI, Wang S, Davis J, Shen T, Fiehn O, Maloof JN, Zerbe P (2020) The foxtail millet (Setaria italica) terpene synthase gene family. Plant J 103(2):781–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3:1222–1239

    CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    CAS  PubMed  Google Scholar 

  • Kermani SG, Saeidi G, Sabzalian MR, Gianinetti A (2019) Drought stress influenced sesamin and sesamolin content and polyphenolic components in sesame (Sesamum indicum L.) populations with contrasting seed coat colors. Food Chem 289:360–368

    Google Scholar 

  • Khare S, Singh NB, Singh A et al (2020) Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J Plant Biol 63:203–216. https://doi.org/10.1007/s12374-020-09245-7

    Article  CAS  Google Scholar 

  • Kleine S, Müller C (2014) Drought stress and leaf herbivory affect root terpenoid concentrations and growth of Tanacetum vulgare. J Chem Ecol 40:1115–1125

    CAS  PubMed  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA 107:2361–2366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BR, Zhang Q, Park SH, Islam MT, Kim TH (2019) Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Hortic Environ Biotechnol 60:31–40

    Google Scholar 

  • Li QF, Wang C, Jiang L, Li S, Sun SS, He JX (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5:ra72. https://doi.org/10.1126/scisignal.2002908

    Article  CAS  PubMed  Google Scholar 

  • Li W, Lu J, Lu K, Yuan J, Huang J, Du H, Li J (2016) Cloning and phylogenetic analysis of brassica Napus L. Caffeic acid O‑Methyltransferase 1 gene family and its expression pattern under drought stress. PLoS ONE 11. https://doi.org/10.1371/journal.pone.0165975

  • Li Y, Zhang J, Zhang J, Hao L, Hua J, Duan L, Zhang M, Li Z (2013) Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol J 11:747–758

    CAS  PubMed  Google Scholar 

  • Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 6:35040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin-lin Y, Yang L, Yang X, Zhang T, Yi-ming L, Zhao Y, Han M, Li-min Y (2020) Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry 177:112434

    Google Scholar 

  • Liu C, Zhang T (2017) Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC Genomics 18:118

    PubMed  PubMed Central  Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Over expression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. Plos One 9:86895

    Google Scholar 

  • Liu P, Xu ZS, Pan-Pan L, Hu D, Chen M, Li LC, Ma YZ (2013a) A wheat PI4K gene whose product possesses threonine auto phosphorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot 64:2915–2927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Xu ZS, Pan-Pan L, Hu D, Chen M, Li LC et al (2013b) A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot 64:2915–2927. https://doi.org/10.1093/jxb/ert133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YN, Xi M, Zhang XL, Yu ZD, Kong FL (2019) Carbon storage distribution characteristics of wetlands in China and its influencing factors. Ying Yong Sheng Tai Xue Bao 30:2481–2489

    PubMed  Google Scholar 

  • Lo SF, Ho THD, Liu YL, Jiang MJ, Hsieh KT, Chen KT, Yu LC, Lee MH, Chen CY, Huang TP, Kojima M (2017) Ectopic expression of specific GA 2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnol J 15:850–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Sun D, Wang C, Li Y, Guo T (2014) Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem 80:60–66

    CAS  PubMed  Google Scholar 

  • Ma X, Zhang J, Burgess P, Rossi S, Huang B (2018) Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environ Exp Bot 145:1–11

    CAS  Google Scholar 

  • Makunga NP, Staden J, Cress WA (1997) The effect of light and 2,4‑D on anthocyanin production in Oxalis reclinata callus. Plant Growth Regul 23:153–158

    CAS  Google Scholar 

  • Masoumian M, Arbakariya A, Syahida A, Maziah M (2011) Flavonoids production in Hydrocotyle bonariensis callus tissues. J Med Plant Res 5:1564–1574

    CAS  Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46:189–195

    CAS  PubMed  Google Scholar 

  • Mazloom N, Khorassani R, Zohury GH, Emami H, Whalen J (2020) Lignin-based hydrogel alleviates drought stress in maize. Environ Exp Bot 104055. https://doi.org/10.1016/j.envexpbot.2020.104055

  • Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S (2014) Abscisic acid and abiotic stress tolerance-different tiers of regulation. J Plant Physiol 171:486–496

    CAS  PubMed  Google Scholar 

  • Men Y, Wang D, Li B, Su Y, Chen G (2018) Effects of drought stress on the antioxidant system, osmolytes and secondary metabolites of Saposhnikovia divaricata seedlings. Acta Physiol Plant 40:191

    Google Scholar 

  • Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y (2019) Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110

    CAS  PubMed  Google Scholar 

  • Misra BB, Acharya BR, Granot D, Assmann SM, Chen S (2015) The guard cell metabolome: functions in stomatal movement and global food security. Front Plant Sci 6:334

    PubMed  PubMed Central  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013a) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

    CAS  PubMed  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM et al (2013b) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104. https://doi.org/10.1111/tpj.12014

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, Ma J, Zhang Y, Wei C, Zhang X (2016) Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front Plant Sci 7:644

    PubMed  PubMed Central  Google Scholar 

  • Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Laurière C, Chevalier A, Castresana C, Hirt H (2013) An abscisic acid independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11:1001513

    Google Scholar 

  • Moursi YS, Thabet SG, Amro A, Dawood MF, Baenziger PS, Sallam A (2020) Detailed genetic analysis for identifying QTLs associated with drought tolerance at seed germination and seedling stages in barley. Plants 9(11):1425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch S, Peñuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    PubMed  Google Scholar 

  • Munteanu V, Gordeev V, Martea R, Duca M (2014) Effect of gibberellin cross talk with other Phytohormones on cellular growth and mitosis to endoreduplication transition. Int J Adv Res Biol Sci 1:136–153

    Google Scholar 

  • Naeem M, Basit A, Ahmad I, Mohamed HI, Wasila H (2020) Effect of salicylic acid and salinity stress on the performance of tomato plants. Gesunde Pflanz 72(4):393–402

    CAS  Google Scholar 

  • Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, Khan FA, Naushin F (2019) Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: Plant signaling molecules. Woodhead, pp 157–168

    Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids. Plant J 77:367–379

    CAS  PubMed  Google Scholar 

  • Nakamura M, Takeuchi Y, Miyanaga K, Seki M, Furusaki S (1999) High anthocyanin accumulation in the dark by strawberry (Fragaria ananassa) callus. Biotechnol Lett 21:695–699

    CAS  Google Scholar 

  • Narayan MS, Thimmaraju R, Bhagyalakshmi N (2005) Interplay of growth regulators during solid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochem 40:351–358

    CAS  Google Scholar 

  • Nazareno AL, Hernandez BS (2017) A mathematical model of the interaction of abscisic acid, ethylene and methyl jasmonate on stomatal closure in plants. PLoS ONE 12:171065

    Google Scholar 

  • Nichols SN, Hofmann RW, Williams WM (2015) Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. Environ Exp Bot 119:40–47

    CAS  Google Scholar 

  • Nir I, Moshelion M, Weiss D (2014) The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant Cell Environ 37:113–123. https://doi.org/10.1111/pce.12135

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LSP (2011) Analysis of cytokinins mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nozue M, Kubo H, Nishimura M, Yasuda H (1995) Detection and characterization of a vacuolar protein (VP24) in anthocyanin-producing cells of sweet potato in suspension culture. Plant Cell Physiol 36:883–889

    CAS  Google Scholar 

  • Pandey A, Sharma M, Pandey GK (2016) Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7:434

    PubMed  PubMed Central  Google Scholar 

  • Park SR, Hwang J, Kim M (2020) The Arabidopsis WDR55 is positively involved in ABA-mediated drought tolerance response. Plant Biotechnol Rep 14(4):407–418

  • Pavlu J, Novak J, Koukalova V, Luklova M, Brzobohaty B, Cerny M (2018) Cytokinin at the crossroads of abiotic stress signalling pathways. Int J Mol Sci 19:2450

    PubMed  PubMed Central  Google Scholar 

  • Podda A, Pollastri S, Bartolini P, Pisuttu C, Pellegrini E, Nali C, Cencetti G, Michelozzi M, Frassinetti S, Giorgetti L, Fineschi S (2019) Drought stress modulates secondary metabolites in Brassica oleracea L. convar. acephala (DC) Alef, var. sabellica. J Sci Food Agric 99:5533–5540

    CAS  PubMed  Google Scholar 

  • Qu X, Wang H, Chen M, Liao J, Yuan J, Niu G (2019) Drought stress-induced physiological and metabolic changes in leaves of two oil tea cultivars. J Am Soc Hortic Sci 144:439–447

    CAS  Google Scholar 

  • Quan NT, Anh LH, Khang DT, Tuyen PT, Toan NP, Minh TN, Bach DT, Ha PTT, Elzaawely AA, Khanh TD, Trung KH (2016) Involvement of secondary metabolites in response to drought stress of rice (Oryza sativa L.). Agriculture 6:23

    Google Scholar 

  • Quiroga G, Erice G, Aroca R, Zamarreño ÁM, García-Mina JM, Ruiz-Lozano JM (2020) Radial water transport in arbuscular mycorrhizal maize plants under drought stress conditions is affected by indole-acetic acid (IAA) application. J Plant Physiol 246:153115

    PubMed  Google Scholar 

  • Rani A, Singh K, Sood P, Kumar S, Ahuja PS (2009) p‑Coumarate: CoA ligase as a key gene in the yield of catechins in tea [Camellia sinensis (L.) O. Kuntze. Funct Integr Genomics 9:271–275

    CAS  PubMed  Google Scholar 

  • Rao NKS, Laxman RH, Shivashankara KS (2016) Physiological and morphological responses of horticultural crops to abiotic stresses. In: Abiotic stress physiology of horticultural crops. Springer, pp 3–17

    Google Scholar 

  • Rebey IB, Jabri-Karoui I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B (2012) Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind Crop Prod 36:238–245

    Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2018) Differential responses of phenolic compounds of Brassica napus under drought stress. Iran. J Plant Physiol 8:2417–2425

    Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring Jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6:1077

    PubMed  PubMed Central  Google Scholar 

  • Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211:225–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K (2019) Jasmonic acid signaling pathway in plants. Int J Mol Sci 20:2479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M (2019) Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat Commun 10:4021. https://doi.org/10.1038/s41467-019-12002-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sallam A, Alqudah AM, Dawood MF, Baenziger PS, Börner A (2019) Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Inter J Mol Sci 20(13):3137

    CAS  Google Scholar 

  • Sánchez-Martín J, Heald J, Kingston-Smith A, Winters A, Rubiales D, Sanz M et al (2015) A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ 38:1434–1452. https://doi.org/10.1111/pce.12501

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rodríguez E, Moreno DA, Ferreres F, del Mar Rubio-Wilhelmi M, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72:723–729

    PubMed  Google Scholar 

  • Sánchez-Romera B, Ruiz-Lozano JM, Li G, Luu DT, Martínez-Ballesta Mdel C, Carvajal M et al (2014) Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ 37:995–1008. https://doi.org/10.1111/pce.12214

    Article  CAS  PubMed  Google Scholar 

  • Santos ABD, Bottcher A, Kiyota E, Mayer JLS, Vicentini R, Brito MDS, Creste S, Landell MG, Mazzafera P (2015) Water stress alters lignin content and related gene expression in two sugarcane genotypes. J Agric Food Chem 63:4708–4720

    CAS  PubMed  Google Scholar 

  • Scarpeci TE, Frea VS, Zanor MI, Valle EM (2016) Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. J Exp Bot 68:673–685

    Google Scholar 

  • Shan C, Zhou Y, Liu M (2015) Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma 252:1397–1405

    CAS  PubMed  Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Bhardwaj R, Alam P, Ahmad P (2016) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7:1569

    PubMed  PubMed Central  Google Scholar 

  • Sharma NK, Gupta SK, Dwivedi V, Chattopadhyay D (2020) Lignin deposition in chickpea root Xylem under drought. Plant Signal Behav 15(6):1754621

    PubMed  PubMed Central  Google Scholar 

  • Shin NH, Trang DT, Hong WJ, Kang K, Chuluuntsetseg J, Moon JK, Yoo YH, Jung KH, Yoo SC (2020) Rice Senescence-Induced Receptor-Like Kinase (OsSRLK) is involved in phytohormone-mediated chlorophyll degradation. Int J Mol Sci 21:260

    CAS  Google Scholar 

  • Singh VP, Prasad SM, Munné-Bosch S, Müller M (2017b) Phytohormones and the regulation of stress tolerance in plants: current status and future directions. Front Plant Sci 8:1871

    PubMed  PubMed Central  Google Scholar 

  • Sofy M, Mohamed H, Dawood M, Abu-Elsaoud A, Soliman M (2021) Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants. Arch Agron Soil Sci 68(14):2005–2026

    Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273

    CAS  PubMed  Google Scholar 

  • Su L, Fang L, Zhu Z, Zhang L, Sun X, Wang Y, Wang Q, Li S, Xin H (2020) The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis. Plant Cell Rep. https://doi.org/10.1007/s00299-020-02519-x

  • Tattini M, Velikova V, Vickers C, Brunetti C, Di Ferdinando M, Trivellini A, Fineschi S, Agati G, Ferrini F, Loreto F (2014) Isoprene production in transgenic tobacco alters isoprenoid, non-structural carbohydrate and phenylpropanoid metabolism, and protects photosynthesis from drought stress. Plant Cell Environ 37:1950–1964

    CAS  PubMed  Google Scholar 

  • Tayyab N, Naz R, Yasmin H, Nosheen A, Keyani R, Sajjad M, Hassan MN, Roberts TH (2020) Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS ONE 15:232269

    Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological; biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C, Singh CP, Prasad V, Prasad M (2017) A functional genomics perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genomics 18:469–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1‑amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    PubMed  PubMed Central  Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    CAS  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    PubMed  PubMed Central  Google Scholar 

  • Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, Novák O, Lovisolo C, Schubert A, Cardinale F (2020) A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ 43(7):1613–1624. https://doi.org/10.1111/pce.13758

    Article  CAS  PubMed  Google Scholar 

  • Vojta P, Kokáš F, Husiˇcková A, Grúz J, Bergougnoux V, Marchetti CF, Jiskrová E, Ježilová E, Mik V, Ikeda Y, Galuszka P (2016) Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. New Biotechnol 33:676–691

    CAS  Google Scholar 

  • Wang C, Zhao Y, Gu P, Zou F, Meng L, Song W et al (2018a) Auxin is involved in lateral root formation induced by drought stress in tobacco seedlings. J Plant Growth Regul 37:539–549. https://doi.org/10.1111/ppl.12444

    Article  CAS  Google Scholar 

  • Wang DH, Du F, Liu HY, Liang ZS (2010) Drought stress increases iridoid glycosides biosynthesis in the roots of Scrophularia ningpoensis seedlings. J Med Plants Res 4:2691–2699

    CAS  Google Scholar 

  • Wang J, Griffiths R, Ying J, McCourt P, Huang Y (2009) Development of drought-tolerant (Brassica napus L.) through genetic modulation of ABA-mediated stomata responses. Crop Sci 49:1539–1554

    Google Scholar 

  • Wang P, Su L, Gao H, Jiang X, Wu X, Li Y, Zhang Q, Wang Y, Ren F (2018b) Genome-wide characterization of bHLH genes in grape and analysis of their potential relevance to abiotic stress tolerance and secondary metabolite biosynthesis. Front Plant Sci 9:64

    PubMed  PubMed Central  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Google Scholar 

  • Xu J, Trainotti L, Li M, Varotto C (2020) Overexpression of isoprene synthase affects ABA- and drought-related gene expression and enhances tolerance to abiotic stress. Int J Mol Sci 21:4276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Physiol 59:225–251

    CAS  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    CAS  PubMed  Google Scholar 

  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    PubMed  PubMed Central  Google Scholar 

  • Yeloojeh KA, Saeidi G, Sabzalian MR (2020) Drought stress improves the composition of secondary metabolites in safflower flower at the expense of reduction in seed yield and oil content. Ind Crops Prod 154:112496

    Google Scholar 

  • Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu LH, Wu SJ, Peng YS et al (2015) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14:72–84

    PubMed  Google Scholar 

  • Zargar SM, Zargar MY (2018) Abiotic stress-mediated sensing and signaling in plants: an omics perspective. Springer

    Google Scholar 

  • Zechmann B (2014) Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li Y, Hassan MJ, Li Z, Peng Y (2020) Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biol 20:1–12

    Google Scholar 

  • Zhao J, Yu N, Ju M, Fan B, Zhang Y, Zhu E et al (2019) ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. J Exp Bot 70:6277–6291. https://doi.org/10.1093/jxb/erz382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Zhang X, Ma W, Song J, Rahman SU, Wang J, Zhang Y (2017) Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei. Environ Exp Bot 138:77–87

    Google Scholar 

  • Zhou HC, Shamala LF, Yi XK, Yan Z, Wei S (2020a) Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions. Sci Rep 10:1–13

    Google Scholar 

  • Zhou Y, Zhai H, He S, Zhu H, Gao S, Xing S, Wei Z, Zhao N, Liu Q (2020b) The sweet potato BTB-TAZ protein gene, IbBT4, enhances drought tolerance in transgenic Arabidopsis. Front Plant Sci 11:877

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SA, VB, SSP, MR, D, SSR, RK, TH, and HIM. The first draft of the manuscript was written by SA, VB, SSP, MR, D, SSR, RK, TH, and HIM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

S. Ahmad, V. Belwal, S.S. Punia, M. Ram, Dalip, S.S. Rajput, R. Kunwar, M.K. Meena, D. Gupta, G.L. Kumawat, T. Hussain and H.I. Mohamed declare that they have no competing interests.

Additional information

Availability of data and materials

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Belwal, V., Punia, S.S. et al. Role of Plant Secondary Metabolites and Phytohormones in Drought Tolerance: A Review. Gesunde Pflanzen 75, 729–746 (2023). https://doi.org/10.1007/s10343-022-00795-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00795-z

Keywords

Navigation