Skip to main content

Advertisement

Log in

Interaction Effect of Water Magnetization and Water Salinity on Yield, Water Productivity and Morpho-Physiological of Balkız Bean (Phaseolus vulgaris)

Wechselwirkung zwischen Wassermagnetisierung und Wasserversalzung auf Ertrag, Wasserproduktivität und Morphophysiologie der Bohne (Phaseolus vulgaris)

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Developing new tools for using low-quality irrigation waters is vital for the sustainability of irrigated agriculture and minimizing salt accumulation. Therefore, the present study focused on the interactive influence of irrigation treatments (magnetized (MT) and non-magnetized (NMT)) and water salinities (0.38, 1.5, 4.5, and 7.0 dSm−1) on soil salinity, water use efficiency, yield and morpho-physiological changes of Balkız bean. A pot experiment was conducted in a randomized complete block design with three replications under the rain shelter condition. Irrigation water MT treatment increased fresh bean yield, water use efficiency (WUE) and irrigation water use efficiency (IWUE) by 21.35, 23.00 and 14.8%, respectively, while saturated soil salinity was reduced by 20%, compared to NMT treatments. The leaf area, stomata, and leaf succulence in green beans in the MT treatment significantly increased by 13.4, 23.9, and 3.3% compared with those in the NMT treatment. Stems of the bean crops were more sensitive to salinity stress followed by roots and leaves. The study revealed that irrigation with magnetically treated water manages salinity related yield loss through increased morphological features as well as osmotic and stomatal adjustments. In addition, the bean crops showed an ability to protect water in tissue against salinity toxicity up to 5.24 dSm−1 soil salinity level under magnetized saline water conditions. Finally, irrigation with magnetically treated 0.38 dSm−1 irrigation water can be recommended due to providing a higher yield, WUE, IWUE, and sustainable production under saline irrigation in water scarcity regions.

Zusammenfassung

Die Entwicklung neuer Verfahren zur Nutzung von Bewässerungswasser geringer Qualität ist für die Nachhaltigkeit der Bewässerungslandwirtschaft und die Minimierung der Salzanreicherung von entscheidender Bedeutung. Daher konzentrierte sich die vorliegende Studie auf den interaktiven Einfluss von Bewässerungsbehandlungen (magnetisiert (MT) und nicht magnetisiert (NMT)) und Wassersalzgehalten (0,38, 1,5, 4,5 und 7,0 dSm−1) auf die Versalzung des Bodens, die Wassernutzungseffizienz, den Ertrag und morpho-physiologische Veränderungen der Bohne (Sorte ‘Balkız’). Ein Topfversuch wurde in einem randomisierten vollständigen Blockversuch mit drei Wiederholungen unter regengeschützten Bedingungen durchgeführt. Die MT-Behandlung mit Bewässerungswasser steigerte den Frischbohnenertrag, die Wassernutzungseffizienz (WUE) und die Bewässerungswassernutzungseffizienz (IWUE) um 21,35 %, 23,00 % bzw. 14,8 %, während die Versalzung des Bodens im Vergleich zu den NMT-Behandlungen um 20 % reduziert wurde. Die Blattfläche, die Stomata und die Blattsukkulenz von grünen Bohnen in der MT-Behandlung nahmen im Vergleich zur NMT-Behandlung signifikant um 13,4, 23,9 und 3,3 % zu. Die Stängel der Bohnenkulturen reagierten empfindlicher auf Versalzung, gefolgt von Wurzeln und Blättern. Die Studie ergab, dass die Bewässerung mit magnetisch behandeltem Wasser die mit der Versalzung verbundenen Ertragseinbußen durch eine Verbesserung der morphologischen Merkmale sowie der osmotischen und stomatären Anpassungen in Grenzen hält. Darüber hinaus zeigten die Bohnenpflanzen die Fähigkeit, das Wasser im Gewebe vor Versalzungstoxizität bis zu einem Bodensalzgehalt von 5,24 dSm−1 unter magnetisierten Salzwasserbedingungen zu schützen. Schließlich kann die Bewässerung mit magnetisch behandeltem Bewässerungswasser (0,38 dSm−1) empfohlen werden, da sie einen höheren Ertrag, eine höhere WUE und IWUE und eine nachhaltige Produktion unter salzhaltiger Bewässerung in Regionen mit Wasserknappheit ermöglicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abedinpour M, Rohani E (2017) Effects of magnetized water application on soil and maize growth indices under different amounts of salt in the water. J Water Reuse Desalinat 7(3):319–325

    Article  CAS  Google Scholar 

  • Abou El-Yazied A, El-Gizawy AM, Khalf SM, El-Satar A, Shalaby OA (2012) Effect of magnetic field treatments for seeds and irrigation water as well as N, P and K levels on productivity of tomato plants. J Appl Sci Res 8(4):2088–2099

    CAS  Google Scholar 

  • Aladjadjiyan A (2002) Study of the influence of magnetic field on some biological characteristics of Zea mais. J Cent Eur Agric 3(2):89–94

    Google Scholar 

  • Albert R (1975) Salt regulation in halophytes. Oecologia 21:57–71

    Article  PubMed  Google Scholar 

  • Ali Y, Samaneh R, Kavakebian F (2014) Applications of magnetic water technology in farming and agriculture development: a review of recent advances. Curr World Environ 9(3):695

    Article  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Asghar T, Iqbal M, Jamil Y, Nisar J, Shahid M (2017) Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield. J Photochem Photobiol B Biol 166:212–219

    Article  CAS  Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture vol 29. Food and Agriculture Organization of the United Nations, Rome, p 174

    Google Scholar 

  • Bacilio M, Moreno M, Bashan Y (2016) Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Appl Soil Ecol 107:394–404

    Article  Google Scholar 

  • Choudhary OP, Grattan SR, Minhas PS (2011) Sustainable crop production using saline and sodic irrigation waters. In: Alternative farming systems, biotechnology, drought stress and ecological fertilisation. Springer, Dordrecht, pp 293–318

    Chapter  Google Scholar 

  • Desire M, Arslan H (2021) The Effect of salicylic acid on photosynthetic characteristics, growth attributes, and some antioxidant enzymes on parsley (petroselinum crispum l.) under salinity stress. Gesunde Pflanzen 73:435–444.

    Article  CAS  Google Scholar 

  • Duarte Diaz CE, Riquenes JA, Sotolongo B, Portuondo MA, Quintana EO, Perez R (1997) Effects of magnetic treatment of irrigation water on the tomato crop. Hortic Abst 69:494

    Google Scholar 

  • El-Kady AF, Borham TI (2020) Sustainable cultivation under saline irrigation water: alleviating salinity stress using different management treatments on Terminalia arjuna (Roxb.) wight & Arn. Agric Water Manag 229:105902

    Article  Google Scholar 

  • Gholizadeh M, Arabshahi H, Saeidi MR, Mahdavi B (2008) The effect of magnetic water on growth and quality improvement of poultry. Middle East J Sci Res 3(3):140–144

    CAS  Google Scholar 

  • Hamza AH, Shreif MA, El-Azeim A, Mohamad M, Mohamed WA (2021) Impacts of magnetic field treatment on water quality for ırrigation, soil properties and maize yield. J Mod Res 3:51–61

    Google Scholar 

  • Hossain MS (2019) Present scenario of global salt affected soils, its management and importance of salinity research. Int Res J Biol Sci 1:1–3

    Google Scholar 

  • Howell TA, Davis KR, McCormick RL, Yamada H, Walhood VT, Meek DW (1984) Water use efficiency of narrow row cotton. Irrigation Sci 5(3):195–214

    Article  Google Scholar 

  • Hozayn M, Ahmed AA (2019) Effect of magneto-priming by tryptophan and ascorbic acid on germination attributes of barley (Hordeum vulgare, L.) under salinity stress. Eur Asian J Biosci 13:245–251

    CAS  Google Scholar 

  • Hozayn M, El-Monem AAA, Abdelraouf RE, Abdalla MM (2013) Do magnetic water affect water use efficiency, quality and yield of sugar beet (Beta vulgaris L.) plant under arid regions conditions? J Agron 12(1):1–10

    Article  CAS  Google Scholar 

  • Jacoby RP, Millar AH, Taylor NL (2010) Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J Proteome Res 9:6595–6604

    Article  CAS  PubMed  Google Scholar 

  • Kang SZ, Shi P, Pan YH, Liang ZS, Hu XT, Zhang J (2000) Soil water distribution, uniformity and water-use efficiency under alternate furrow irrigation in arid areas. Irrigation Sci 19(4):181–190

    Article  Google Scholar 

  • Kareem NSA (2018) Evaluation of magnetizing ırrigation water ımpacts on the enhancement of yield and water productivity for some crops. J Agric Sci Technol A 8:271–283

    Google Scholar 

  • Khoshravesh M, Mostafazadeh-Fard B, Mousavi SF, Kiani AR (2011) Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil Use Manag 27(4):515–522

    Article  Google Scholar 

  • Kiremit MS, Arslan H (2016) Effects of irrigation water salinity on drainage water salinity, evapotranspiration and other leek (Allium porrum L.) plant parameters. Sci Hortic 201:211–217

    Article  CAS  Google Scholar 

  • Kiremit MS, Arslan H (2018) Response of leek (Allium porrum L.) to different ırrigation water levels under rain shelter. Commun Soil Sci Plant Anal 49(1):99–108

    Article  CAS  Google Scholar 

  • Leelapriya T, Dhilip KS, Sanker Narayan PV (2003) Effect of weak sinusoidal magnetic field on germination and yield of cotton (Gossypium spp. Electromagn Biol Med 22(2–3):117–125

    Article  Google Scholar 

  • Liu X, Wang L, Wei Y, Zhang Z, Zhu H, Kong L, Ma F (2020) Irrigation with magnetically treated saline water influences the growth and photosynthetic capability of Vitis vinifera L. seedlings. Sci Hortic 262:109056

    Article  CAS  Google Scholar 

  • Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy. Consequences for photosynthesis. Plant Physiol 63:700–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari B, Grewal HS (2009) Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. Agric Water Manag 96:1229–1236

    Article  Google Scholar 

  • Mahmood S, Usman M (2014) Consequences of magnetized water application on maize seed emergence in sand culture. J Agric Sci Technol 16(1):47–55

    Google Scholar 

  • Massah J, Dousti A, Khazaei J, Vaezzadeh M (2019) Effects of water magnetic treatment on seed germination and seedling growth of wheat. J of Plant Nutrition 42(11–12):1283–1289

    Article  CAS  Google Scholar 

  • Mohamed AI (2013) Effect of magnetized low quality water on some soil properties and plant growth. Int J Res Chem Environ 3(2):140–147

    Google Scholar 

  • Mohamed AI, Ebead BM (2013) Effect of magnetic treated irrigation water on salt removal from a sandy soil and on the availability of certain nutrients. Int J Eng 2(2):2305–8269

    Google Scholar 

  • Moussa HR (2011) The impact of magnetized water application for improving common bean (Phaseolus vulgaris L.) production. N Y Sci J 4:15–20

    Google Scholar 

  • Muranaka S, Shimizu K, Kato M (2002) Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance. Photosynt 40:201–207

    Article  CAS  Google Scholar 

  • Ogunlela AO, Yusuf KO (2016) Effect of magnetic treatment of water on chemical properties of water and sodium adsorption ratio. J Res For Wildl Environ 8(4):73–79

    Google Scholar 

  • Reina FG, Pascual LA (2001) Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: theoretical considerations. Bioelectromagnetics 22(8):589–595

    Article  CAS  PubMed  Google Scholar 

  • Rezende R, de Castro Seron CA, do Nascimento JMR, Lorenzoni MZ, Gonçalves ACA, Saath R, de Freitas SEL (2019) Application of magnetically treated water to eggplant seedlings. Afr J Agric Res 14(33):1635–1640

    Article  Google Scholar 

  • Rhoades JD, Manteghi NA, Shouse PJ, Alves WJ (1989) Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Sci Soc Am J 53(2):433–439

    Article  Google Scholar 

  • Sadeghipour O (2016) The effect of magnetized water on physiological and agronomic traits of cowpea (Vigna unguiculata L.). Int J Res Chem Met Civ Eng 3:195–198

    Google Scholar 

  • Sadeghipour O, Aghaei P (2013) Improving the growth of cowpea (Vigna unguiculata L. Walp.) by magnetized water. J Biodivers Environ Sci 3(1):37–43

    Google Scholar 

  • Schiattone MI, Candido V, Cantore V, Montesano FF, Boari F (2017) Water use and crop performance of two wild rocket genotypes under salinity conditions. Agric Water Manag 194:214–221

    Article  Google Scholar 

  • Sezer İ, Akay H, Mut Z, Arslan H, Öztürk E, Erbaş Köse ÖD, Kiremit MS (2021a) Effects of different water table depth and salinity levels on quality traits of bread wheat. Agriculture 11(10):969

    Article  Google Scholar 

  • Sezer İ, Kiremit MS, Öztürk E, Subrata BAG, Osman HM, Akay H, Arslan H (2021b) Role of melatonin in improving leaf mineral content and growth of sweet corn seedlings under different soil salinity levels. Sci Hortic 288:110376

    Article  CAS  Google Scholar 

  • Song J, Ding X, Feng G, Zhang F (2006) Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions. New Phytol 171:357–366

    Article  CAS  PubMed  Google Scholar 

  • Steel RG, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill, New York, p 481

    Google Scholar 

  • Ünlükara A, Kurunc A, Kesmez GD, Yurtseven E, Suarez DL (2010) Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage. J Int Comm Irrigation Drainage 59(2):203–214

    Google Scholar 

  • Wang SF, Hu YX, Sun HJ, Shi X, Pan HW, Chen YT (2014) Effects of saline stress on growth and root development of two oak seedlings. Acta Ecol Sin 34(4):1021–1029

    Google Scholar 

  • Yadollahpour A, Jalilifar M, Rashidi S (2014a) Antimicrobial effects of electromagnetic fields: A review of current techniques and mechanisms of action. J Pure Appl Microbiol 8(5):4031–4043

    Google Scholar 

  • Yadollahpour A, Rashidi S, Ghotbeddin Z, Jalilifar M, Rezaee Z (2014b) Electromagnetic fields for the treatments of wastewater: a review of applications and future opportunities. J Pure Appl Microbiol 8(5):3711–3719

    CAS  Google Scholar 

  • Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol 21:31–38

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Alsuvaid.

Ethics declarations

Conflict of interest

M. Alsuvaid, Y. Demir, M.S. Kiremit and H. Arslan declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsuvaid, M., Demir, Y., Kiremit, M.S. et al. Interaction Effect of Water Magnetization and Water Salinity on Yield, Water Productivity and Morpho-Physiological of Balkız Bean (Phaseolus vulgaris). Gesunde Pflanzen 74, 259–274 (2022). https://doi.org/10.1007/s10343-021-00606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00606-x

Keywords

Schlüsselwörter

Navigation