Skip to main content

Advertisement

Log in

Investigating Quantitative and Qualitative Performance of Bread Wheat Genotypes Under Different Climatic Conditions

Untersuchung der quantitativen und qualitativen Merkmale von Brotweizen-Genotypen unter verschiedenen klimatischen Bedingungen

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

A six-year experiment was carried out with natural variation in temperature and rainfall during grain filling period between 2011–17 growing seasons to investigate the effects of different environments and cultivars on quantity and quality of bread wheat. The experiments were laid out in a randomized complete block design arranged with three replicates. Eight wheat cultivars (Pishgam, Sirvan, Parsi, Bahar, Pishtaz, Sepahan, Sivand and Arg) were selected for evaluation. Grain and biological yields, protein and wet gluten contents, hectoliter weight, and Zeleny sedimentation value were measured. The results indicated that the main effects of year and cultivar were significant on grain and biological yields, hectoliter weight, and Zeleny sedimentation value. There were significant differences in the interaction effect of year × cultivar on protein and wet gluten contents. Although, Parsi cultivar contained the highest grain yield and hectoliter weight (averaged by years, 6603.83 kg ha−1 and 78.10 kg hl−1, respectively), the greatest protein content, and Zeleny sedimentation value belonged to Sivand (12.68% and 23.53 ml, respectively) and Sirvan (12.63% and 23.14 ml, respectively) cultivars. According to the results, there was a statistically significant correlation between grain yield, hectoliter weight, and rainfall during grain filling period. There was a negative and significant correlation between grain yield, Zeleny sedimentation value, and protein and wet gluten contents. Our findings suggested that Sivand and Sirvan cultivars are potentially suitable for making bread and could be cultivated in similar climates due to high protein content and Zeleny sedimentation value.

Zusammenfassung

In dieser Studie wurde ein sechsjähriges Experiment mit natürlichen Temperatur- und Niederschlagsschwankungen während der Kornfüllungsperiode in den Vegetationsperioden 2011–17 durchgeführt, um die Auswirkungen verschiedener Umgebungen und Sorten auf Menge und Qualität von Brotweizen zu untersuchen. Die Experimente wurden in einem randomisierten vollständigen Blockdesign mit drei Wiederholungen angelegt. Acht Weizensorten (Pishgam, Sirvan, Parsi, Bahar, Pishtaz, Sepahan, Sivand und Arg) wurden für die Auswertung ausgewählt. Korn- und biologische Erträge, Protein- und Feuchtklebergehalt, Hektolitergewicht und Zeleny-Sedimentationswert wurden gemessen. Die Ergebnisse deuteten darauf hin, dass die Hauptauswirkungen von Jahr und Sorte auf die Getreide- und biologischen Erträge, das Hektolitergewicht und den Zeleny-Sedimentationswert signifikant waren. Es gab signifikante Unterschiede im Interaktionseffekt von Jahr × Sorte auf den Protein- und Feuchtklebergehalt. Obwohl die Sorte Parsi den höchsten Kornertrag und das höchste Hektolitergewicht (im Jahresdurchschnitt 6603,83 kg ha−1 bzw. 78,10 kg hl−1) aufwies, zeigten die Sorten Sivand und Sirvan den größten Proteingehalt und den höchsten Zeleny-Sedimentationswert (12,68 % bzw. 23,53 ml und 12,63 % bzw. 23,14 ml). Gemäß den Ergebnissen gab es eine statistisch signifikante Korrelation zwischen Kornertrag, Hektolitergewicht und Niederschlag während der Kornfüllung. Außerdem lag eine negative und signifikante Korrelation zwischen Kornertrag, Zeleny-Sedimentationswert und Protein- und Feuchtklebergehalt vor. Unsere Ergebnisse legten nahe, dass die Sorten Sivand und Sirvan potenziell für die Brotherstellung geeignet sind und aufgrund des hohen Proteingehalts und des Zeleny-Sedimentationswerts in ähnlichen Klimazonen angebaut werden könnten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AACC (2000) Approved methods of the American Association of Cereal Chemists. Methods 46–16.01, 38–12.02, 55–10.01, and 56–61.02, 10th edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  • Acuna ML, Savin R, Cura JA, Slafer GA (2005) Grain protein quality in response to changes in pre-anthesis duration in wheats released in 1940, 1964 and 1994. J Agron Crop Sci 191:226–232

    Article  Google Scholar 

  • Aghagholizadeh R, Kadivar M, Nazari M, Mousavi F, Azizi MH, Zahedi M, Rahiminezhad MR (2017) Characterization of wheat gluten subunits by liquid chromatography mass spectrometry and their relationship to technological quality of wheat. J Cereal Sci 76:229–235

    Article  CAS  Google Scholar 

  • Amiri R, Bahraminejad S, Sasani S, Jalali Honarmand S, Fakhri R (2015) Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. Eur J Agron 67:20–26

    Article  CAS  Google Scholar 

  • Amiri R, Sasani S, Jalali Honarmand S, Rasaei A, Seifolahpour B, Bahraminejad S (2018) Genetic diversity of bread wheat genotypes in Iran for some nutritional value and baking quality traits. Physiol Mol Biol Plants 24(1):147–157

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2014) Stress-induced changes in wheat grain composition and quality. Crit Rev Food Sci Nutr 54:1576–1583

    Article  CAS  PubMed  Google Scholar 

  • Aslani F, Mehrvar MR, Nazeri A, Juraimi AS (2013) Investigation of wheat grain quality characteristics under water deficit condition during post-anthesis stage. ARPN J Agric Biol Sci 8:273–278

    Google Scholar 

  • Balla K, Rakszegi M, Li Z, Békés F, Bencze S, Veisz O (2011) Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J Food Sci 29:117–128

    Article  CAS  Google Scholar 

  • Borghi B, Corbellini M, Minoia C, Palumbo M, Di Fonzo N, Perenzin M (1997) Effects of Mediterranean climate on wheat bread making quality. Eur J Agron 6:145–154

    Article  Google Scholar 

  • Bouacha OD, Nouaigui S, Rezgui S (2014) Effects of N and K fertilizers on durum wheat quality in different environments. J Cereal Sci 59:9–14

    Article  Google Scholar 

  • Cubadda RE, Carcea M, Marconi E, Trivisonno MC (2007) Influence of protein content on durum wheat gluten strength determined by the SDS sedimentation test and by other methods. Cereal Food World 52(1):273–277

    CAS  Google Scholar 

  • Darroch BA, Baker RJ (1990) Grain filling in three spring wheat genotypes: statistical analysis. Crop Sci 30:525–529

    Article  Google Scholar 

  • Deihimfard R, Eyni-Nargeseh H, Mokhtassi-Bidgoli A (2018) Effect of future climate change on wheat yield and water use efficiency under semi-arid conditions as predicted by APSIM-wheat model. Int J Plant Prod 12(2):115–125

    Article  Google Scholar 

  • Eivazi A, Abdollahi S, Salekdeh H, Majidi I, Mohamadi A, Pirayeshfar B (2006) Effect of drought and salinity stress on quality related traits in wheat (Triticum aestivum L.) varieties. Iranian J Crop Sci 7:252–267

    Google Scholar 

  • FAO (2017) Food and agriculture organization of the United Nations. http://faostat3.fao.org/. Accessed 23 Mar 2015

  • FAOSTAT (2014) Agricultural data. Food and Agriculture Organization of the United Nations, Rome (http://faostat.fao.org/)

    Google Scholar 

  • Fernando N, Panozzo J, Tausz M, Norton R, Fitzgerald G, Seneweera S (2012) Rising atmospheric CO2 concentration affects mineral nutrient and protein concentration of wheat grain. Food Chem 133:1307–1311

    Article  CAS  Google Scholar 

  • Gooding MJ, Ellis RH, Shewry RR (2003) Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J Cereal Sci 37:295–309

    Article  Google Scholar 

  • Grausgruber H, Oberforster M, Werteker M, Ruckenbauer P, Vollmann J (2000) Stability of quality traits in Austrian-grown winter wheats. Field Crop Res 66:257–267

    Article  Google Scholar 

  • Guarda G, Padovan S, Delogu G (2004) Grain yield, nitrogen use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Eur J Agron 21:181–192

    Article  CAS  Google Scholar 

  • Guttieri MJ, Stark JC, O’Brien K, Souza E (2001) Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficits. Crop Sci 41:327–335

    Article  Google Scholar 

  • Hristov N, Mladenov N, Djuric V, Kondic-Spika A, Marjanovic-Jeromela A, Simic D (2010) Genotype by environment interactions in wheat quality breeding programs in southeast Europe. Euphytica 174:315–324

    Article  Google Scholar 

  • Huang Y, Chen L, Fu B, Huang Z, Gong J (2005) The wheat yields and water use efficiency in the Loess Plateau: straw mulch and irrigation effects. Agric Water Manag 72:209–222

    Article  Google Scholar 

  • Jenner CF (1994) Starch synthesis in the kernel of wheat under high temperature conditions. Aust J Plant Physiol 21:791–806

    CAS  Google Scholar 

  • Jiang D, Yue H, Wollenweber B, Tan W, Mu W, Bo Y (2009) Effects of post-anthesis drought and water logging on accumulation of high-molecular weight glutenin subunits and glutenin macro-polymers content in wheat grain. J Agron Crop Sci 195:89–97

    Article  CAS  Google Scholar 

  • Joshi AK, Mishra B, Chatrath R (2007) Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica 157:431–446

    Article  Google Scholar 

  • Katyal M, Virdi AS, Kaur A, Singh N, Kaur S, Ahlawat AK, Singh AM (2016) Diversity in quality traits amongst Indian wheat varieties I: Flour and protein characteristics. Food Chem 194:337–344

    Article  CAS  PubMed  Google Scholar 

  • Kaya Y, Akcura A (2014) Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci Technol 34(2):386–393

    Article  Google Scholar 

  • Kirigwi FM, Van Ginkel M, Trethowan R, Sears RG, Rajaram S, Paulsen GM (2004) Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica 135:361–371

    Article  Google Scholar 

  • Kotak S, Larkindale J, Lee U, Pascal VK, Vierling E, Scharf K (2007) Complexity of the heat stress response in plants. Plant Biol 10:310–316

    CAS  Google Scholar 

  • Limon-Ortega A, Sayre K (2012) Rainfall as a limiting factor for wheat grain yield in permanent raised-beds. Agron J 104:1171–1175

    Article  CAS  Google Scholar 

  • Malarkodi K, Srimathi P (2007) Seed physiological maturity. Internat J Plant Sci 2(1):222–230

    Google Scholar 

  • Mou B, Kronstad WE, Saulescu NN (1994) Grain filling parameters and protein content in selected winter wheat populations: II. Associations. Crop Sci 34:838–841

    Article  Google Scholar 

  • Najafian G (2012) Study of relationship among several bread making quality assessment indices in hexaploid wheat (Triticum aestivum L.) using correlation analysis. 1st ICC India Grains Conference, in partnership with ICRISAT 4 (3). Special Issue, pp 148–148

    Google Scholar 

  • Peña RJ, Trethowan R, Pfeiffer WH, Van Ginkel M (2002) Quality (end-use) improvement in wheat. J Crop Prod 5:1–37

    Article  Google Scholar 

  • Pierre CS, Peterson CJ, Ross AS, Ohm J, Verhoeven MC, Larson M, Hoefer B (2008) White wheat grain quality changes with genotype, nitrogen fertilization, and water stress. Agron J 100:414–420

    Article  Google Scholar 

  • Shewry PR, Tatham AS (2000) Wheat. The Royal Society of Chemistry, Cambridge, pp 335–339

    Google Scholar 

  • Shewry PR, Tatham AS, Barro F, Barcelo P, Lazzeri P (1995) Biotechnology of bread making: unraveling and manipulating the multi protein gluten complex. Biotechnology 13:1185–1190

    CAS  Google Scholar 

  • Sumesh KV, Sharma-natu P, Ghildiyal MC (2008) Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biol plant 52:749–753

    Article  CAS  Google Scholar 

  • Uthayakumaran S, Newberry M, Phan-Tien N, Tanner R (2002) Small and large strain rheology of wheat gluten. Rheol Acta 41:162–172

    Article  CAS  Google Scholar 

  • Wardlaw IF, Moncur L (1995) The response of wheat to high temperature following anthesis. I. The rate and duration of kernel filling. Aust J Plant Physiol 22:391–397

    Google Scholar 

  • Wardlaw IF, Wrigley CW (1994) Heat tolerance in temperate cereals: an overview. Aust J Plant Physiol 21:695–703

    Google Scholar 

  • Welch RM (2005) Biotechnology, biofortification and global health. Food Nutr Bull 26:304–306

    Article  Google Scholar 

  • Xue QW, Zhu ZX, Musick JT, Stewart BA, Dusek DA (2006) Physiological mechanisms contributing to the increased water use efficiency in winter wheat under deficit irrigation. J Plant Physiol 163:154–164

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Li F, Huang G, Cheng Z, Zhang Y (2006) Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agric Water Manag 79:28–42

    Article  Google Scholar 

  • Zhang P, He Z, Zhang Y, Xia X, Liu J, Yan J, Zhang Y (2007) Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chem 84:370–378

    Article  CAS  Google Scholar 

  • Zhu J, Khan K (2001) Effects of genotype and environment on glutenin polymers and bread making quality. Cereal Chem 78:125–130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Experiments were conducted at the Cereal Research Center of Iran. Also, seeds of all wheat cultivars were provided from the Agricultural Organization of Tehran. The authors would like to thank them for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Heidari Sharif Abad.

Ethics declarations

Conflict of interest

A. Taheri, H. Heidari Sharif Abad, G. Nourmohammadi and M. Seyedain Ardabili declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, A., Heidari Sharif Abad, H., Nourmohammadi, G. et al. Investigating Quantitative and Qualitative Performance of Bread Wheat Genotypes Under Different Climatic Conditions. Gesunde Pflanzen 73, 229–238 (2021). https://doi.org/10.1007/s10343-021-00547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00547-5

Keywords

Schlüsselwörter

Navigation