Albishi T, John J, Al-Khalifa A, Shahidi F (2013) Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J Funct Foods 5:590–600. https://doi.org/10.1016/j.jff.2012.11.019
CAS
Article
Google Scholar
Amado I, Franco D, Sánchez M, Zapata C, Vázquez J (2014) Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem 165:290–299. https://doi.org/10.1016/j.foodchem.2014.05.103
CAS
Article
PubMed
Google Scholar
Andre C, Schafleitner R, Guignard C, Oufir M, Aliaga C, Nomberto G, Hoffmann L, Hausman J, Evers D, Larondelle Y (2009) Modification of the health-promoting value of potato tubers field grown under drought stress: emphasis on dietary antioxidant and glycoalkaloid contents in five native andean cultivars (Solanum tuberosum L.). J Agric Food Chem 57:599–609. https://doi.org/10.1021/jf8025452
CAS
Article
PubMed
Google Scholar
Anees M, Tronsmo A, Edel-Hermann V, Gautheron N, Faloya V, Steinberg C (2010) Biotic changes in relation to local decrease in soil conduciveness to disease caused by Rhizoctonia solani. Eur J Plant Pathol 126:29–41. https://doi.org/10.1007/s10658-009-9517-0
Article
Google Scholar
Bains PS, Bennypaul HS, Lynch DR, Kawchuk LM, Schaupmeyer CA (2002) Rhizoctonia disease of potatoes (Rhizoctonia solani): fungicidal efficacy and cultivar susceptibility. Am J Potato Res 79:99–106. https://doi.org/10.1007/BF02881518
Article
Google Scholar
Baloch GN, Tariq S, Ehteshamul-Haque S, Athar M, Sultana V, Ara J (2013) Management of root diseases of eggplant and watermelon with the application of asafoetida and seaweeds. J Appl Bot Food Qual 86:138–142. https://doi.org/10.5073/JABFQ.2013.086.019
Article
Google Scholar
Bellumori M, Innocenti M, Michelozzi M, Cerretani L, Mulinacci N (2017) Coloured-fleshed potatoes after boiling: promising sources of known antioxidant compounds. J Food Compos Anal 59:1–7. https://doi.org/10.1016/j.freeradbiomed.2003.09.022
CAS
Article
Google Scholar
Buysens C, César V, Ferrais F, de Boulois HD, Declerck S (2016) Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl Soil Ecol 105:137–143. https://doi.org/10.1016/j.apsoil.2016.04.011
Article
Google Scholar
Calvo P, Nelson L, Kloeppeer JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41. https://doi.org/10.1007/s11104-014-2131-8
CAS
Article
Google Scholar
Chojnacka K, Saeid A, Michalak I (2012) The possibilities of the application of algal biomass in the agriculture. Chemik 66(11):1235–1248.
CAS
Google Scholar
Cullen DW, Lees AK (2007) Detection of the nec1 virulence gene and its correlation with pathogenicity in Streptomyces species on potato tubers and in soil using conventional and real time PCR. J Appl Microbiol 102(4):1082–1094. https://doi.org/10.1111/j.1365-2672.2006.03146.x
CAS
Article
PubMed
Google Scholar
Cwalina-Ambroziak B, Głosek-Sobieraj M, Kowalska E (2015) The effect of plant growth regulators on the incidence and severity of potato diseases. Pol J Nat Sci 30(1):5–20.
Google Scholar
Esserti S, Smaili A, Rifai LA, Koussa T, Makroum K, Belfaiza M, Kabil EM, Faize L, Burgos L, Alburquerque N, Faize M (2017) Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. J Appl Phycol 29(2):1081–1093. https://doi.org/10.1007/s10811-016-0996-z
CAS
Article
Google Scholar
Ezekiel R, Singh N, Sharma S, Kaur A (2013) Beneficial phytochemicals in potato—a review. Food Res Int 50:487–496. https://doi.org/10.1016/j.foodres.2011.04.025
CAS
Article
Google Scholar
Gachango E, Hanson LE, Rojas A, Hao JJ, Kirk WW (2012) Fusarium spp. causing dry rot of seedpotato tubers in Michigan and their sensitivity to fungicides. Plant Dis 96:1767–1774. https://doi.org/10.1094/PDIS-11-11-0932-RE
CAS
Article
PubMed
Google Scholar
Galani JHY, Mankad PM, Shah AK, Patel NJ, Acharya RR, Talati JG (2017) Effect of storage temperature on vitamin C, total phenolics, UPLC phenolic acid profile and antioxidant capacity of eleven potato (Solanum tuberosum) varieties. Hortic Plant J 3(2):73–89. https://doi.org/10.1016/j.hpj.2017.07.004
Article
Google Scholar
Gardan L, Gouy C, Christen R, Samson R (2003) Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 53(2):381–391. https://doi.org/10.1099/ijs.0.02423-0
CAS
Article
PubMed
Google Scholar
Gliszczyńska-Świgło A, Ciska E, Pawlak-Lemańska K, Chmielewski J, Borkowski T, Tyrakowska B (2006) Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit Contam 23(11):1088–1098. https://doi.org/10.1080/02652030600887594
CAS
Article
PubMed
Google Scholar
Grosch R, Scherwinski K, Lottmann J, Berg G (2006) Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycol Res 110:1464–1474. https://doi.org/10.1016/j.mycres.2006.09.014
CAS
Article
PubMed
Google Scholar
Głosek-Sobieraj M, Cwalina-Ambroziak B, Hamouz K (2018) The effect of growth regulators and a biostimulator on the health status, yield and yield components of potatoes (Solanum tuberosum L.). Gesunde Pflanzen 70(1):1–11. https://doi.org/10.1007/s10343-017-0407-7
CAS
Article
Google Scholar
Hamouz K, Lachman J, Hejtmánková K, Pazderů K, Čížek M, Dvořák P (2010) Effect of natural and growing conditions on the contentof phenolics in potatoes with different flesh colour. Plant Soil Environ 56(8):368–374.
CAS
Article
Google Scholar
Hamouz K, Lachman J, Pazderu K, Hejtmankova K, Cimr J, Musilova J, Pivec V, Orsak M, Svobodova A (2013) Effect of cultivar, location and method of cultivation on the content of chlorogenic acid in potatoes with different flesh colour. Plant Soil Environ 59(10):465–471.
Article
Google Scholar
Horoszkiewicz-Janka J, Michalski T (2006) The effect of protective treatments on plumpness of grain, germinating capacity and specific composition of fungi isolated from grain of barley and oat. Prog Plant Prot 46(1):417–423. (in Polish)
Google Scholar
Horoszkiewicz–Janka J, Jajor E (2006) The effect of seed dressing on healthiness of barley, wheat and rape in early development stages. J Res Appl Agric Eng 51(2):47–53. (in Polish)
Google Scholar
Ibraheem BMI, Hamed SM, Abd Elrhman AA, Farag FM, Abdel-Raouf N (2017) Antimicrobial activities of some brown macroalgae against some soil borne plant pathogens and in vivo management of Solanum melongena root diseases. Aust J Basic Appl Sci 11:157–168.
CAS
Google Scholar
Jaulneau V, Lafitte C, Corio-Costet MF, Stadnik MJ, Salamagne S, Briand X, Esquerré-Tugayé MT, Dumas B (2011) An Ulva armoricana extract protects plants against three powdery mildew pathogens. Eur J Plant Pathol 131:393–401. https://doi.org/10.1007/s10658-011-9816-0
Article
Google Scholar
Kosanić M, Ranković B, Stanojković T (2015) Biological activities of two macroalgae from Adriatic coast of Montenegro. Saudi J Biol Sci 22(4):390–397. https://doi.org/10.1016/j.sjbs.2014.11.004
CAS
Article
PubMed
Google Scholar
Kumar CS, Raju D, Sarada VL, Rengasamy R (2008) Seaweed extracts control the leaf spot disease of the medicinal plant Gymnema sylvestre. Indian J Sci Technol 1:93–94.
Google Scholar
Kurzawińska H, Gajda I (2002) Fungi settling dry rotting potato tubers. Biul IHAR 223/224:315–319. (in Polish)
Google Scholar
Kurzawińska H, Mazur S (2010) Biotechnical preparations applied during vegetation period and the occurrence of fungal diseases on potato tuber peel. Prog Plant Prot 50(4):2039–2043. (in Polish)
Google Scholar
Larkin RP, Honeycutt CW (2006) Effects of different 3‑year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology 96(1):68–79. https://doi.org/10.1094/PHYTO-96-0068
Article
PubMed
Google Scholar
Leiminger J, Frank M, Wenk C, Poschenrieder G, Kellermann A, Schwarzfischer A (2013) Distribution and characterization of Streptomyces species causing potato common scab in Germany. Plant Pathol 62(3):611–623. https://doi.org/10.1111/j.1365-3059.2012.02659.x
CAS
Article
Google Scholar
Lenc L (2006) Effect of pre-sprouting of potato tubers on occurrence of Rhizoctonia solani Kühn on sprouts and tubers of six organically grown potato cultivars. J Res Appl Agric Eng 51(2):104–107. (in Polish)
Google Scholar
Lutomirska B (2008) The influence of meteorological factors on tuber infection with common scab. Prog Plant Prot 48(1):216–220. (in Polish)
Google Scholar
Madiwale GP, Reddivari L, Holm DG, Vanamala J (2011) Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptotic properties of colored-flesh potatoes against human colon cancer cell lines. J Agric Food Chem 59:8155–8166. https://doi.org/10.1021/jf201073g
CAS
Article
PubMed
Google Scholar
Maldonado AFS, Mudge E, Gänzle M, Schieber A (2014) Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res Int 65:27–34. https://doi.org/10.1016/j.foodres.2014.06.018
CAS
Article
Google Scholar
Nemś A, Miedzianka J, Pęksa A, Kita A (2015) Prohealthy compounds content in potatoes varieties of different flesh colour. Bromatol Chem Toksykol XLVIII(3):473–478. (in Polish)
Google Scholar
Patel S, Saraf M (2017) Biocontrol efficacy of Trichoderma asperellum MSST against tomato wilting by Fusarium oxysporum f. sp. lycopersici. Arch Phytopathol Plant Prot 50:228–238. https://doi.org/10.1080/03235408.2017.1287236
Article
Google Scholar
Paulert R, Ebbinghaus D, Urlass C, Moerschbacher M (2010) Priming of the oxidative burst in rice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhanced resistance against powdery mildew in wheat and barley plants. Plant Pathol 59:634–642. https://doi.org/10.1111/j.1365-3059.2010.02300.x
CAS
Article
Google Scholar
Paulert R, Talamini V, Cassolato JEF, Duarte MER, Noseda MD, Smania A, Stadnik MJ (2009) Effects of sulphated polysaccharide and alcoholic extracts from green seaweeds Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). J Plant Dis Prot 116:263–270. https://doi.org/10.1007/BF03356321
CAS
Article
Google Scholar
Raj TS, Graff KH, Suji HA (2016) Bio chemical characterization of a brown seaweed algae and its efficacy on control of rice sheath blight caused by Rhizoctonia solani Kühn. Int J Trop Agric 34:429–439.
Google Scholar
Reiter MS, Rideout SL, Freeman JH (2012) Nitrogen fertilizer and growth regulator impacts on tuber deformity, rot, and yield for Russet potatoes. Int J Agron 1-7. https://doi.org/10.1155/2012/348754
Article
Google Scholar
Sawicka B (1999) The infuence of synthetic growth regulators Mival and Moddus in potato cultivation on tuber infection with Streptomyces sp. and Rhizoctonia solani. Prog Plant Prot 39(2):616–620. (in Polish)
CAS
Google Scholar
Singh P, Saldaña M (2011) Subcritical water extraction of phenolic compounds from potato peel. Food Res Int 44:2452–2458. https://doi.org/10.1016/j.foodres.2011.02.006
CAS
Article
Google Scholar
Sultana V, Baloch GN, Ara J, Ehteshamul-Haque S, Tariq RM, Athar M (2011) Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J Appl Bot Food Qual 84:162–168.
CAS
Google Scholar
Sultana V, Ehteshamul-Haque S, Ara J, Athar M (2005) Comparative efficacy of brown, green and red seaweeds in the control of root infecting fungi and okra. Int J Environ Sci Technol (Tehran) 2:129–132. https://doi.org/10.1007/BF03325866
Article
Google Scholar
Surekha CH, Neelapu NRR, Prasad BS, Sankar GP (2014) Induction of defense enzymes and phenolic content by Trichoderma viride in Vigna mungo infested with Fusarium oxysporum and Alternaria alternata. Int J Agric Sci Res 4:31–40.
Google Scholar
Sławiak M, Łojkowska E, Van Der Wolf JM (2009) First report of bacterial soft rot on potato caused by Dickeya sp. (syn. Erwinia chrysanthemi) in Poland. Plant Pathol 58(4):794. https://doi.org/10.1111/j.1365-3059.2009.02028.x
Article
Google Scholar
Tambascio C, Covacevich F, Lobato MC, de Lasa C, Caldiz DO, Dosio GAA, Andreu AB (2014) The application of K phosphites to seed tubers enhanced emergence, early growth and mycorrhizal colonization in potato (Solanum tuberosum). Am J Plant Sci 5:132–137. https://doi.org/10.4236/ajps.2014.51017
CAS
Article
Google Scholar
Terry LA, Joyce DC, Adikaram NKB, Kambay PBS (2014) Preformed antifungal compounds in strawberry fruit and flower tissues. Postharvest Biol Technol 31:201–210. https://doi.org/10.1016/j.postharvbio.2003.08.003
CAS
Article
Google Scholar
Thornton MK, Lee J, John R, Olsen NL, Navarre DA (2013) Influence of growth regulators on plant growth, yield, and skin color of specialty potatoes. Am J Potato Res 90(3):271–283. https://doi.org/10.1007/s12230-013-9302-7
CAS
Article
Google Scholar
Tierno R, Ruiz de Galarreta JI (2016) Breeding for nutritional quality and pest resistance: potential of a set of non-commercial tetraploid potato cultivars with purple and red flesh. Rev Latinoam Papa 20(1):9–17.
Google Scholar
Waterer D (2010) Influence of growth regulators on skin colour and scab diseases of red-skinned potatoes. Can J Plant Sci 90(5):745–753. https://doi.org/10.4141/CJPS10055
CAS
Article
Google Scholar
Wierzbowska J, Cwalina-Ambroziak B, Głosek M, Sienkiewicz S (2015) Effect of biostimulators on yield and selected chemical properties of potato tubers. J Elementol 20(3):757–768. https://doi.org/10.5601/jelem.2014.19.4.799
Article
Google Scholar
Youssef SA, Tartoura KA, Abdelraouf GA (2016) Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol Control 100:79–86. https://doi.org/10.1016/j.biocontrol.2016.06.001
CAS
Article
Google Scholar
Zarzecka K, Gugała M, Sikorska A, Mystkowska I, Baranowska A, Niewęgłowski M, Dołęga H (2019) The effect of herbicides and biostimulants on polyphenol content of potato (Solanum tuberosum L.) tubers and leaves. J Saudi Soc Agric Sci 18:102–106. https://doi.org/10.1016/j.jssas.2017.02.004
Article
Google Scholar
Łacicowa B (1970) Investigations on Helminthosporium sorokinianum (= H. sativum) strains and on the resistance of spring barley varieties to this pathogenic factor. Acta Mycol 6(2):184–248. (in Polish)
Google Scholar