Skip to main content

Advertisement

Log in

Genetic resilience of Atlantic forest trees to impacts of biome loss and fragmentation

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Understanding populational genetic diversity is crucial for making proper decisions about conservation and sustainable species management. In this work, we overviewed the conservation genetics of economically exploited tree species that are vulnerable to extinction in the Atlantic Forest of Brazil. For this, data on genetic parameters from research on 10 species of evergreen trees dwelling in that environment were compiled. Genetic variability differences between young and adults were assessed when data were available for both stages. Very low values observed for the probability of identity (PI) suggested that the SSR markers used had sufficient statistical power to consistently evaluate genetic variability of the populations. An innovative analytical approach using linear mixed-effect models revealed an integrated influence of the number of individuals sampled per population and the number of SSR markers on the output of the genetic estimators assessed. A large number of different alleles (NA) were observed in four out of the 10 species, indicating these populations may still hold unique and rare alleles. HO was smaller than HE for all but one of the studied species, suggesting higher numbers of homozygotes than expected. Comparison of data between ontogenic stages suggested that the time frame of habitat loss and fragmentation was not yet sufficient to cause significant loss of genetic diversity and differentiate populations. Our findings are discussed considering that intensity and duration of selective lodging and economic exploitation appear to be crucial for the underlying ecological patterns and for the definition of proper diversity conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The files containing sampling sites and genotyping data with microsatellite markers will be deposited in the Dryad database.

References

  • Borges DB, Mariano-Neto E, Caribé DS, Corrêa RX, Gaiotto FA (2020) Changes in fine-scale spatial genetic structure related to protection status in Atlantic rain forest fragment. J Nat Conserv 53:125784

    Article  Google Scholar 

  • Dean W (1996) A ferro e fogo: a história e a devastação da mata atlântica Brasileira. Cia. das Letras, São Paulo

    Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1(2):e1500052

    Article  Google Scholar 

  • De Kort JG, Runier S, Ducatez O, Honnay M, Baguette VM, Stevens S, Blanchet, (2021) Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat Commun 12:516

    Article  Google Scholar 

  • Miraldo A, Li S, Borregaard MK, Flórez-Rodríguez A, Gopalakrishnan S, Rizvanovic M (2016) An anthropocene map of genetic diversity. Science 353:1532–1535

    Article  CAS  Google Scholar 

  • Petit RJ, Mousadik EL, A, Pons O, (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Piasentin FB, Gois SLL (2016) Conservação de remanescentes florestais no Brasil: considerações sobre os principais instrumentos de gestão ambiental. Desenv Meio Amb 36:115–134

    Article  Google Scholar 

  • Santos ER, Barros HB, Ferraz EC, Cella AJS, Capone A, Santos AF, Fidelis RR (2011) Divergence between soybean genotypes grown in irrigated lowland Brazil. Rev Ceres 58:755–764

    Article  Google Scholar 

  • Sebbenn AM, Carvalho ACM, Freitas MLM, Moraes SMB, Gaino APSC, Silva JM, Jolivet C, Moraes MLT (2011) Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106:134–145

    Article  CAS  Google Scholar 

  • Silva DSBS, Barboza BG, Anuska CFS, Oliveira B, Estevam CSA, Neto V, Santos ALLM, Dias AS, Scher R, Pantaleao SM (2013) Investigation of protective effects of Erythrina velutina extract against MMS induced damages in the root meristem cells of Allium cepa. Rev Bras Farmacogn 23:273–278

    Article  Google Scholar 

  • Waqar Z, Moraes RCS, Benchimol M, Morante-Filho JC, Mariano-Neto E, Gaiotto FA (2021) Gene flow and genetic structure reveal reduced diversity between generations of a tropical tree Manilkara multifida penn in atlantic forest fragments. Genes 12(12):2025

    Article  CAS  Google Scholar 

  • Albuquerque UP, Gonçalves P, Ferreira J, Washington S, Chaves L (2018) Humans as niche constructors: revisiting the concept of chronic anthropogenic disturbances in ecology. Perspect Ecol Conserv 16:1–11

    Google Scholar 

  • Allendorf F, Luikart G (2006) Conservation and genetics of populations. Blackwell Publishing

  • Almeida-Rocha JM, Soares L, De Andrade ER, Gaiotto FA, Cazetta E (2020) The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: a global meta-analysis. Mol Ecol. https://doi.org/10.1111/mec.15688

    Article  Google Scholar 

  • Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer, New York

    Book  Google Scholar 

  • Arroyo-Rodríguez V, Fahrig L, Tabarelli M, Watling JI, Tischendorf L, Benchimol M, Cazetta E, Faria D, Leal IR, Melo FPL, Morante’Filho JC, Santos BA, Arasa-Gisbert R, Arce-Pea N, Cervantes-López MJ, Cudney-Valenzuela S, Galán-Acedo C, San José M, Vieira ICG, Slik JW, Ferry NAJ, Tscharntke T (2020) Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol Lett 23(9):1404–1420

    Article  Google Scholar 

  • Atsushi N, Susumu G, Chikako S, Yuji I (2021) Directional seed and pollen dispersal and their separate effects on anisotropy of fine-scale spatial genetic structure among seedlings in a dioecious, wind-pollinated, and wind-dispersed tree species, Cercidiphyllum japonicum. Ecol Evol 11:7754–7767

    Article  Google Scholar 

  • Azevedo VCR, Vinson CC, Ciampi AY (2005) Twelve microsatellite loci in Manilkara huberi (Ducke) standl (Sapotaceae), an amazonian timber species. Mol Ecol Notes 5:13–15

    Article  CAS  Google Scholar 

  • Bambach RK (2006) Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci 34:127–155

    Article  CAS  Google Scholar 

  • Barbosa ACOF, Collevatti RG, Chaves LJ, Guedes LBS, Diniz-Filho JAF, Telles MPC (2015) Range-wide genetic differentiation of Eugenia dysenterica (Myrtaceae) populations in Brazilian Cerrado. Biochem Syst Ecol 59:288–296

    Article  CAS  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixedeffects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bosa N, Calvete EO, Klein VA, Susin M (2015) Growth of gypsophila seedlings on different substrates. Hortic Bras 21:514–519

    Article  Google Scholar 

  • Browne L, Karubian J (2018) Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm. Mol Ecol 27:3055–3069

    Article  Google Scholar 

  • Buzatti RSDO, Ribeiro RA, Lemos Filho JPD, Lovato MB (2012) Fine-scale spatial genetic structure of Dalbergia nigra (Fabaceae), a threatened and endemic tree of the Brazilian atlantic forest. Genet Mol Biol 35:838–846

    Article  Google Scholar 

  • Caballero S, Dove V, Jackson-Ricketts J, Junchompoo C, Cohen S, Hines E (2019) Mitochondrial DNA diversity and population structure in the irrawaddy dolphin (Orcaella brevirostris) from the gulf of Thailand and the mekong river. Mar Mamm Sci 35:300–310

    Article  Google Scholar 

  • Cardoso SRS, Provani J, Lira CF, Pereira LOR, Ferreira PCG, Cardoso MA (2005) High levels of genetic structuring as a result of population fragmentation in the tropical tree species Caesalpinia echinata lam. Biodivers Conserv 14:1047–1057

    Article  Google Scholar 

  • Carvalho ACM, Freitas MLM, Moraes SMB, Stranghetti V, Alzate-Marin AL, Sebbenn AM (2010) Genetic diversity, inbreeding and gene flow in a small fragmented population of Copaifera langsdorffii. Rev Bras Bot 33:599–606

    Google Scholar 

  • Carvalho CS, Ribeiro MC, Cortes MC, Galetti M, Collevatti RG (2015) Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm. Heredity 115:216–224

    Article  Google Scholar 

  • Carvalho CS, Ballesteros-Mejia L, Ribeiro MC, Côrtes MC, Santos AS, Collevatti RG (2017) Climatic stability and contemporary human impacts affect the genetic diversity and conservation status of a tropical palm in the atlantic forest of Brazil. Conserv Genet 18(2):467–478. https://doi.org/10.1007/s10592-016-0921-7

    Article  Google Scholar 

  • Cassano CR, Schroth G, Faria D (2009) Landscape and farm scale management to enhance biodiversity conservation in the cocoa producing region of southern bahia, Brazil. Biodivers Conserv 18:577–603

    Article  Google Scholar 

  • Coelho GM, Santos AS, Menezes IPP, Tarazi R, Sousa FMO, Silva MGCPC, Gaiotto FA (2020) Genetic structure among morphotypes of the endangered Brazilian palm Euterpe edulis Mart (Arecaceae). Ecol Evol 10:6039–6048

    Article  Google Scholar 

  • Collevatti RG, Hay JD (2011) Kin structure and genotype-dependent mortality: a study using the neotropical tree Caryocar brasiliense. J Ecol 99:757–763

    Article  Google Scholar 

  • Collevatti RG, Grattapaglia D, Hay JD (2001) Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol 10:349–356

    Article  CAS  Google Scholar 

  • Diniz-Filho JAF, Nabout JC, Telles MPC, Soares TN, Rangel TFLVB (2009) A review of techniques for spatial modeling in geographical, conservation and landscape genetics. Genet Mol Biol 32:203–211

    Article  Google Scholar 

  • Dumini J, Brown RP, Ewédjè E-EBK, Mardulyn P, Doucet J-L, Hardy OJ (2013) Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae). BMC Evol Biol 13:195

    Article  Google Scholar 

  • Fietz J, Tomiuk J, Loeschcke V, Weis-Dootz T, Segelbacher G (2014) Genetic consequences of forest fragmentation for a highly specialized arboreal mammal - the edible dormouse. PLoS ONE 9:e88092

    Article  Google Scholar 

  • Ganzhorn S, Perez-Sweeney B, Thomas W, Gaiotto F, Lewis J (2015) Effects of fragmentation on density and population genetics of a threatened tree species in a biodiversity hotspot. Endang Species Res 26:189–199

    Article  Google Scholar 

  • Gerstner K, Dormann CF, Stein A (2014) Effects of land use on plant diversity – a global meta-analysis. J Appl Ecol 51:1690–1700

    Article  Google Scholar 

  • Godoy FMDR, Lenzi M, Ferreira BHDS, Silva LVD, Zanella CM, Paggi GM (2018) High genetic diversity and moderate genetic structure in the self-incompatible, clonal Bromelia hieronymi (Bromeliaceae). Bot J Linn Soc 187:672–688

    Article  Google Scholar 

  • Goulart MF, Ribeiro SP, Lovato MB (2005) Genetic, morphological and spatial characterization of two populations of Mabea fistulifera Mart. (Euphorbiaceae), in different successional stages. Braz Arch Biol Technol 48:275–284

    Article  Google Scholar 

  • Guidugli MC (2011) Genetic studies of the forest species Cariniana estrellensis (Raddi) kuntez: diversity, Crossing system and contemporary gene flow. Doctoral Dissertation. University of Sao Paulo.

  • Hamrick JL, Godt MJW, Sherman-Broyles S (1992) Factors influencing levels of genetic diversity in wood plant species. New for (dordr) 6:95–124

    Google Scholar 

  • Harguindeguy I (2013) Physiological responses to hypoxia and manganese in eucalyptus clones with differential drought tolerance of pointers from Vale do Rio Doce. 2013. Masters Thesis. Federal University of Viçosa

  • Heuertz M, Caron H, Scotti-Saintagne C, Pétronelli P, Engel J, Tysklind N, Miloudi S, Gaiotto FA, Chave J, Molino JF, Sabatier D, Loureiro J, Budde KB (2020) The hyperdominant tropical tree Eschweilera coriacea (Lecythidaceae) shows higher genetic heterogeneity than sympatric Eschweilera species in French guiana. Plant Ecol Evol 153:67–81

    Article  Google Scholar 

  • Hollingsworth PM, Dawson IK, Goodall-Copestake WP, Richardson JE, Weber JC, Sotelo Montes C, Pennington RT (2005) Do farmers reduce genetic diversity when they domesticate tropical trees? A case study from Amazonia. Mol Ecol 14:497–501

    Article  CAS  Google Scholar 

  • Keenan K, Mcginnity P, Cross TF, Crozier WW, Prodohl PA (2013) diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Method Ecol Evol 4:782–788

    Article  Google Scholar 

  • Kumar S, Kumaria S, Sharma SK, Rao SR, Tandon P (2009) Genetic diversity assessment of Jatropha curcas L. germplasm from northeast India. Biomass Bioenerg 35:3063–3070

    Article  Google Scholar 

  • Kunz N, Reiner G, Gold S (2014) Investing in disaster management capabilities versus pre-positioning inventory: a new approach to disaster preparedness. Int J Prod Econ 157:261–272

    Article  Google Scholar 

  • Lander TA, Bebber D, Choy TL, Harris SA, Boshier DH (2011) The circe principle explains how resource-rich land can waylay pollinators in fragmented landscapes. Curr Biol 21:1302–1307

    Article  CAS  Google Scholar 

  • Leal SRP, Gaiotto FA (2014) Effect of selective logging on genetic diversity and gene flow in Cariniana legalis sampled from a cacao agroforestry system. Genet Mol Res 13:626–635

    Article  CAS  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource loss following habitat fragmentation and degradation; reconciling predicted theory with empirical evidence. Heredity 95:255–273

    Article  CAS  Google Scholar 

  • Martini AMZ, Fiaschi P, Amorim AM, Paixão J (2007) A hot-point within a hotspot: a high diversity site in Brazil`s Atlantic forest. Biodivers Conserv 16:3111–3128

    Article  Google Scholar 

  • Martins K et al (2016) The role of very small fragments in conserving genetic diversity of a common tree in a hyper fragmented Brazilian Atlantic forest landscape. Conserv Genet 17(3):509–520

    Article  Google Scholar 

  • Melo SCO, Gaiotto FA, Cupertino FB (2007) Microsatellite markers for Caesalpinia echinata Lam. (Brazilwood), a tree that named a country. Conserv Genet 8:1269–1271

    Article  CAS  Google Scholar 

  • Moreira PAM, Frederico SN, Jorge AL (2021) Consequences of tropical dry forest conversion on diaspore fate of Enterolobium contortisiliquum (Fabaceae). Plant Ecol 222:525–535

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nascimento HEM, Laurance WF (2006) Area and edge effects on forest structure in upland forest fragments after 13–17 years of isolation. Acta Amaz 36:183–192

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  Google Scholar 

  • Van Oosterhout OC, Utchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Ouinsavi C, Sokpon N, DE Khasa P (2009) Genetic diversity and population structure of a threatened african tree species, Milicia excelsa, using nuclear microsatellites DNA markers. Int J for Res 2009:1–8

    Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  Google Scholar 

  • Paschoa RPDA, Christ JA, Valente CS, Ferreira MFDAS, Miranda FDDE, Garbin ML, Carrijo TT (2018) Genetic diversity of populations of the dioecious Myrsine coriacea (Primulaceae) in the Atlantic Forest. Acta Bot Brasilica 32:376–385

    Article  Google Scholar 

  • Peakall R, Smouse PF (2012) GenAlEx 6.5: genetic analysis in Excel. population genetic software for teaching and research - an update. Bioinform 28:2537–2539

    Article  CAS  Google Scholar 

  • Poorter H, Jagodzinski AM, Ruiz-Peinado R, Kuyah S, Luo Y, Oleksyn J, Sack L (2015) How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol 208:736–749

    Article  Google Scholar 

  • Rafalski JA, Morganti M, Powell W, Vogel JM, Tingey SV (1996) Generating and using DNA markers in plants. In: Bierren B, Lai E (eds) Non-mammalian Genomic Analysis: a practical guide. Springer, New York

    Google Scholar 

  • Reichmann MC, Zanella CÂ, Valério Júnior C, Borges ACP, Sausen TL, Paroul N, Cansian RL (2017) Genetic diversity in populations of Maytenus dasyclada (Celastraceae) in forest reserves and unprotected Araucaria forest remnants. Acta Bot Brasilica 31:93–101

    Article  Google Scholar 

  • Reis MVM, Damasceno Júnior PC, Campos TO, Diegues IP, Feitas SC (2015) Genetic variability and association between characteristics in germplasm of the physic nut (Jatropha curcas L.) germplasm. Rev Ciênc Agron 46:412–420

    Article  Google Scholar 

  • Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic forest. Perspect Ecol Conserv 16:208–214

    Google Scholar 

  • Rocha LB (2006) A região cacaueira da Bahia: uma abordagem fenomenológica. Universidade Federal de Sergipe, Thesis

    Google Scholar 

  • Rolim SG, Sambuichi RH, Schroth G, Nascimento MT, Gomes JML (2016) Recovery of forest and phylogenetic structure in abandoned cocoa agroforestry in the Atlantic forest of Brazil. Environ Manage 59:410–418

    Article  Google Scholar 

  • Santos AS, Cazetta E, Morante Filho JC, Baumgarten J, Faria D, Gaiotto FA (2015) Lessons from a palm: genetic diversity and structure in anthropogenic landscapes from Atlantic Forest. Brazil Conserv Genet 16(6):1295–1302

    Article  Google Scholar 

  • Santos AS, Cazetta E, Dodonov P, Faria D, Gaiotto FA (2016) Landscape-scale deforestation decreases gene flow distance of a keystone tropical palm, mart (Arecaceae). Ecol Evol 6:6586–6598

    Article  Google Scholar 

  • Santos AS, Borges DB, Vivas CV, Berg CVD, Rodrigues PS, Tarazi R, Gaiotto FA (2019) Gene pool sharing and genetic bottleneck effects in subpopulations of eschweilera ovata (Cambess.) mart. ex miers (Lecythidaceae) in the Atlantic forest of Southern Bahia. Brazil Genetic Mol Biol 42:655–665

    Article  Google Scholar 

  • Santo-Silva E, Almeida W, Tabarelli M, Peres C (2016) Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape. Plant Ecol (dordr) 217:1129–1140

    Article  Google Scholar 

  • Sarmento MB, Villela FA (2010) Sementes de espécies florestais nativas do sul do Brasil. Inform Abrates. 20:39–44

    Google Scholar 

  • Silva FKG, Lopes SF, Lopez LCS, Melo JIM, Trovão DMBM (2014) Patterns of species richness and conservation in the Caatinga along elevational gradients in a semiarid ecosystem. J Arid Environ 110:47–52

    Article  Google Scholar 

  • Silva-Junior JA, Franca DS, Moraes RCS, Gaiotto FA (2016) Development of microsatellite markers for Manilkara maxima T.D. Penn. (Sapotaceae) and their use in conservation genetics. Mol Biol Rep 44:1–5

    Google Scholar 

  • Soares LASS, Cazetta E, Santos LR, França DDES, Gaiotto FA (2019) Anthropogenic disturbances eroding the genetic diversity of a threatened palm tree: a multiscale approach. Front Genet 10:1090

    Article  Google Scholar 

  • Sommer AB, Freitas MLM, Zannato AS, Tambarussi EV, Moraes MLT, Ambrosano MN, Pereira LCSM, Gandara FB, Kageyama PY, Alexandre M et al (2013) The effects of pollen dispersal and mating pattern on inbreeding depression and hybrid vigor in Balfourodendron riedelianum (Engl.) Engl. (Rutaceae). Conserv Genet 21:305–317

    Google Scholar 

  • Souza PB, Souza AL, Silva Costa W, Del Peloso RV, Delana JM (2012) Floristic and diversity of tree species and shrub under a stand of Anadenanthera peregrina (L.) Speg. Cerne 18:413–421

    Article  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ, Mcrae BH, Scribner K (2010) Use of resistance surfaces for landscape genetics studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  Google Scholar 

  • Stupp T, de Freitas RA, Sierakowski MR, Deschamps FC, Wisniewski A, Biavatti MW (2008) Characterization and potential uses of Copaifera langsdorfii seeds and seed oil. Bioresour Technol 99:2659–2663

    Article  CAS  Google Scholar 

  • Sujii P, Schwarcz K, Grando C, De Aguiar S, Ellida M, Gustavo M, Brancalion PHS, Zucchi M (2017) Recovery of genetic diversity levels of a neotropical tree in Atlantic Forest restoration plantations. Biol Conserv 211:110–116

    Article  Google Scholar 

  • Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA (2010) Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol Conserv 143:2328–2340

    Article  Google Scholar 

  • Tarazi R, Mantovani A, Reis MS (2009) Fine-scale spatial genetic structure and allozymic diversity in natural populations of Ocotea catharinensis Mez. (Lauraceae). Conserv Genet 11:965–976

    Article  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acid Res 12:4127–4138

    Article  CAS  Google Scholar 

  • Vranckx G, Jacquemyn H, Muys B, Honnay O (2012) Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 26:228–237

    Article  Google Scholar 

  • Weir BS (1990) Genetic Data Analysis. Sunderland, Massachusetts: Sinauer Associates, Inc

  • Wickham H (2016) Package ‘ggplot2’: elegant graphics for data analysis. Springer-Verlag, New York, 10, 978-0

  • Zucchi MI, Pinheiro JB, Chaves LJ, Coelho ASG, Couto MA, Morais LKD et al (2005) Genetic structure and gene flow of Eugenia dysenterica natural populations. Pesq Agropec Bras 40:975–980

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the Coordenação de Aperfeiçoamento de Pessoal de nível Superior (CAPES), who provided postdoctoral researcher fellowship to ASS, and doctoral studies scholarship to NSS (Finance Code 001). The research was also supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) provided to FAG. (CNPq Proj. #306160/2017-0). The authors would like to thank the colleagues in the Conservation Genetics group at UESC by scientific discussions with regards to this manuscript. We also thank the Universidade Estadual de Santa Cruz (UESC) for the laboratory facilities and infrastructure provided for the research.

Funding

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de nível Superior – CAPES (Grant numbers: Code 001) and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Grant numbers: 306160/2017–0).

Author information

Authors and Affiliations

Authors

Contributions

The authors ASS, FAG and LLL contributed to the study conception and design. Material preparation and analysis were performed by ASS. All authors contributed to the data collection. The first draft of the manuscript was written by NSS, ASS and LLL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The authors NSS, ASS and LLL have contributed equally to this work and shared first authorship.

Corresponding author

Correspondence to Alesandro Souza Santos.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Oliver Gailing.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 80 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Santana, N.S., Santos, A.S., Borges, D.B. et al. Genetic resilience of Atlantic forest trees to impacts of biome loss and fragmentation. Eur J Forest Res 142, 161–174 (2023). https://doi.org/10.1007/s10342-022-01516-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-022-01516-x

Keywords

Navigation