Skip to main content

Advertisement

Log in

Clear-cutting without additional regeneration treatments can trigger successional setbacks prolonging the expected time to compositional recovery in boreal forests

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Clear-cutting is one of the most widespread forestry practices used in boreal forests. Clear-cutting of boreal forests in late successional stages could trigger reversion of successional trajectories back toward forests of earlier stages. Such successional setbacks could generate sustainability issues by prolonging the expected time to compositional recovery after clear-cutting. This could lead to overestimation of allowable cuts of economically important late-successional species if the occurrence of successional setbacks remains unassessed. Our objective was to assess whether clear-cutting without additional regeneration treatments has triggered successional setbacks. We studied post-clearcut successional trajectories by using forest inventory data in post-clearcut stands, in light of conceptual successional dynamics models. These data covered the actively managed boreal forest region of Quebec, eastern Canada, which is classified into two ecological regions, themselves subdivided into eastern (cool–wet) and western (warm–dry) sub regions. Clear-cutting triggered successional setbacks in half of these regions. Such setbacks could prolong, by at least an additional century, the expected time to compositional recovery after clear-cutting. To prevent the overestimation of allowable cuts of economically important late-successional species, foresters could monitor post-clear-cut successional trajectories to assess whether setbacks were triggered. Post-clear-cut successional setbacks occurred in the two western ecological regions where climatic conditions are warmer and drier than in their eastern counterpart where no setbacks occurred. Hence, sustainability issues brought on by successional setbacks may be exacerbated by climate change. Finally, furthering our understanding of the transformation of successional dynamics by anthropogenic disturbances will be essential to insure sustainable forestry practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available at https://mffp.gouv.qc.ca/le-ministere/acces-aux-donnees-gratuites/.

References

  • Angelstam P, Kuuluvainen T (2004) Boreal forest disturbance regimes, successional dynamics and landscape structures—a European perspective. Ecol Bull 51:117–136

    Google Scholar 

  • Archambault L, Delisle C, Larocque GR, Sirois L, Belleau P (2006) Fifty years of forest dynamics following diameter-limit cuttings in balsam fir-yellow birch stands of the Lower St. Lawrence region, Quebec, Canada. Can J Res 36:2745–2755

    Article  Google Scholar 

  • Alvarez E, Bélanger L, Archambault L, Raulier F (2011) Portrait préindustriel dans un contexte de grande variabilité naturelle: une étude de cas dans le centre du Québec (Canada). For Chron 87:612–624

    Article  Google Scholar 

  • Barrette M, Bélanger L (2007) Reconstitution historique du paysage préindustriel de la région écologique des hautes collines du Bas-Saint-Maurice. Can J Res 37:1147–1160

    Article  Google Scholar 

  • Barrette M, Thiffault N, Tremblay J-P, Auger I (2019) Balsam fir stands of northeastern North America are resilient to spruce plantation. For Ecol Manage 450:1–6

    Article  Google Scholar 

  • Barrette M, Dumais D, Auger I, Boucher Y, Bouchard M, Bouliane J (2020) Naturalness assessment performed using forestry maps to validate forest management sustainability. Ecol Ind 119:106832

    Article  Google Scholar 

  • Barrette M, Thiffault N, Auger I (2021) Resilience of natural forests can jeopardize or enhance plantation productivity. For Ecol Manage 482:118872

    Article  Google Scholar 

  • Bergeron Y (2000) Species and stand dynamics in the mixed-woods of Quebec’s southern boreal forest. Ecology 81:1200–1516

    Article  Google Scholar 

  • Boisvert-Marsh L, Périé C, de Blois S (2014) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5:83

    Article  Google Scholar 

  • Bouchard M, Aquilué N, Périé C, Lambert M-C (2019) Tree species persistence under warming conditions: A key driver of forest response to climate change. For Ecol Manage 442:96–104

    Article  Google Scholar 

  • Boucher Y, Grondin P, Auger I (2014) Land use history (1840–2005) and physiography as determinants of southern boreal forests. Landsc Ecol 29:437–450

    Article  Google Scholar 

  • Boucher Y, Perrault-Hébert M, Fournier R, Drapeau P, Auger I (2017) Cumulative patterns of logging and fire (1940–2009): consequences on the structure of the eastern Canadian boreal forest. Landsc Ecol 32:361–375

    Article  Google Scholar 

  • Boucher Y, Auger I, Arseneault D, Elzein T, Sirois L (2021) Long-term (1925–2015) forest structure reorganization in an actively managed temperate-boreal forest region of eastern North America. For Ecol Manage 481:118744

    Article  Google Scholar 

  • Boulanger Y, Arseneault D, Boucher Y, Gauthier S, Cyr D, Taylor AR, Price D, Dupuis S (2019) Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada. Landsc Ecol 34:159–174

    Article  Google Scholar 

  • Boulanger Y, Pascual Puigdevall J (2021) Boreal forests will be more severely affected by projected anthropogenic climate forcing than mixedwood and northern hardwood forests in eastern Canada. Landsc Ecol 36:1725–1740

    Article  Google Scholar 

  • Brecka AFJ, Shahi C, Chen HYH (2018) Climate change impacts on boreal forest timber supply. For Policy Econ 92:11–21

    Article  Google Scholar 

  • Brice M-H, Cazelles K, Legendre P, Fortin M (2019) Disturbances amplify tree community responses to climate change in the temperate–boreal ecotone. Glob Ecol Biogeogr 28:1668–1681

    Article  Google Scholar 

  • Carleton TJ, MacLellan P (1994) Woody vegetation response to fire versus clear-cutting logging: a comparative survey in the central Canadian boreal forest. Ecoscience 1:141–152

    Article  Google Scholar 

  • Chen HYH, Popadiouk RV (2002) Dynamics of North American boreal mixedwoods. Environ Rev 10:137–166

    Article  Google Scholar 

  • Cyr DS, Gauthier S, Bergeron Y, Carcaillet C (2009) Forest management is driving the eastern North American boreal forest outside its natural range of variability. Front Ecol Environ 7:519–524

    Article  Google Scholar 

  • Danneyrolles V, Dupuis S, Fortin G, Leroyer M, de Römer A, Terrail R, Vellend M, Boucher Y, Laflamme J, Bergeron Y, Arseneault D (2019) Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nat Commun 10:1265

    Article  Google Scholar 

  • de Bello F, Valencia E, Ward D, Hallett L (2020) Why we still need permanent plots for vegetation science. J Veg Sci 31:679–685

    Article  Google Scholar 

  • Didion M, Kupferschmid AD, Lexer MJ, Rammer W, Seidl R, Bugmann H (2009) Potentials and limitations of using large-scale forest inventory data for evaluating forest succession models. Ecol Model 220:133–147

    Article  Google Scholar 

  • Flanagan LB, Syed KH (2011) Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Glob Chang Biol 17:2271–2287

    Article  Google Scholar 

  • Grondin P, Noël J, Hotte D (2007) Atlas des unités homogènes du Québec méridional selon la végétation et ses variables explicatives. Ministère des Ressources naturelles et de la Faune, Direction de la recherche forestière, Québec, 138p

  • Grondin P, Gauthier S, Borcard D, Bergeron Y, Noël J (2013) A new approach to ecological land classification for the Canadian boreal forest that integrates disturbances. Landsc Ecol 29:1–16

    Article  Google Scholar 

  • Heym M, Uhl E, Moshammer R, Dieler J, Stimm K, Pretzsch H (2021) Utilising forest inventory data for biodiversity assessment. Ecol Ind 121:107196

    Article  Google Scholar 

  • Keane RE, Holsinger LM, Loehman R (2020) Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates. For Ecol Manage 477:118498

    Article  Google Scholar 

  • Kuuluvainen T, Gauthier S (2018) Young and old forest in the boreal: critical stages of ecosystem dynamics and management under global change. For Ecosyst 5:26

    Article  Google Scholar 

  • Laquerre S, Leduc A, Harvey BD (2009) Augmentation du couvert en peuplier faux-tremble dans les pessières noires du nord-ouest du Québec après coupe totale. Écoscience 16:483–491

    Article  Google Scholar 

  • Lieffers VJ, Armstrong GW, Stadt KJ, Marenholtz EH (2008) Forest regeneration standards: are they limiting management options for Alberta’s boreal mixedwoods? For Chron 84:76–82

    Article  Google Scholar 

  • Maleki K, Gueye MA, Lafleur B, Leduc A, Bergeron Y (2020) Modelling post-disturbance successional dynamics of the Canadian boreal mixedwoods. Forests 11:3

    Article  Google Scholar 

  • MFFP (Ministère des Forêts, de la Faune et des Parcs) (2020) Ressources et industries forestières—portrait statistique, édition 2020. Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs, Direction du Développement de L’industrie des Produits du Bois. Québec, QC, 160p

  • MRN (Ministère des Ressources Naturelles) (2013) Le guide sylvicole du Québec, Tomes 1 et 2. Les Fondements Biologiques de la Sylviculture, Les Publications du Québec, Québec, 1753p

  • MRNF (Ministère des Ressources Naturelles et de la Faune) (2006a) Normes d’inventaire forestier; placettes échantillons permanentes. Forêt Québec, Direction des Inventaires Forestiers, Québec, Canada

  • MRNF (Ministère des Ressources Naturelles et de la Faune) (2006b) Normes d’inventaire forestier; placettes échantillons temporaires. Forêt Québec, Direction des Inventaires Forestiers. Québec, Canada

  • MRNF (Ministère des Ressources Naturelles et de la Faune) (2009) Norme de cartographie écoforestière; troisième inventaire écoforestier. Forêt Québec, Direction des Inventaires Forestiers, Québec, Canada

  • National Forestry Database (2020) Provincial and Territorial Profiles. http://nfdp.ccfm.org/. Accessed 10 Dec 2020

  • Prach K, Tichý L, Lencová K, Adámek M, Koutecký T, Sádlo J, Bartošová A, Novák J, Kovář P, Jírová A, Šmilauer P, Řehounková K (2016) Does succession run towards potential natural vegetation? An analysis across seres. J Veg Sci 27:515–523

    Article  Google Scholar 

  • Reich PB, Sendall KM, Stefanski A, Rich RL, Hobbie SE, Montgomery RA (2018) Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562:263–267

    Article  CAS  Google Scholar 

  • Robitaille A, Saucier J-P, Chabot M, Côté D, Boudreault C (2015) An approach for assessing suitability for forest management based on constraints of the physical environment at a regional scale. Can J for Res 45:529–539

    Article  Google Scholar 

  • SAS Institute Inc (2018) SAS/STAT® 15.1 User’s Guide. SAS Institute Inc, Cary

  • Schaphoff S, Reyer CPO, Schepaschenko D, Gerten D, Shvidenko A (2016) Tamm review: observed and projected climate change impacts on Russia’s forests and its carbon balance. For Ecol Manage 361:432–444

    Article  Google Scholar 

  • van der Veen A, Grootjans AP, de Jong J, Rozema J (1997) Reconstruction of an interrupted primary beach plain succession using a Geographical Information System. J Coastal Conserv 3:71–78

    Article  Google Scholar 

  • Vaughn WR, Taylor AR, MacLean DA, D'Orangeville L, Lavigne MB (2021) Climate change experiment suggests divergent responses of tree seedlings in eastern North America’s Acadian Forest Region over the 21st century. Can J For Res 51: 1888–1902

  • Wolf AT, Parker L, Fewless G, Corio K, Sundance J, Howe R, Gentry H (2008) Impacts of summer versus winter logging on understory vegetation in the Chequamegon-Nicolet National Forest. For Ecol Manage 254:35–45

    Article  Google Scholar 

  • Wurtz TL, Zasada JC (2001) An alternative to clear-cutting in the boreal forest of Alaska: a 27-year study of regeneration after shelterwood harvesting. Can J for Res 31:999–1011

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jean Noël for help in figure preparation and W.F.J. Parsons for English language revision.

Funding

This work was supported by Project 142332110, Direction de la Recherche Forestière of the Ministère des Forêts, de la Faune et des Parcs (MFFPQ), of the provincial government of Quebec (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Barrette.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Christian Ammer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrette, M., Boucher, Y., Dumais, D. et al. Clear-cutting without additional regeneration treatments can trigger successional setbacks prolonging the expected time to compositional recovery in boreal forests. Eur J Forest Res 141, 629–639 (2022). https://doi.org/10.1007/s10342-022-01465-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-022-01465-5

Keywords

Navigation