Skip to main content

Advertisement

Log in

The influence of man-induced land-use change on the upper forest limit in the Romanian Carpathians

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The Romanian Carpathians are an important part of Europe’s mountain areas, the actual pattern of forest cover reflecting a long history of land-use practices and management. In the present work, we analyse the recent changes (1945–2018) in the upper forest cover along the 37 mountain units using old topographic maps and Sentinel-2A high-resolution satellite images in order to quantify several spatial indicators related to the upper forest cover and upper forest limit changes. In order to understand the regional variation, we have tested the correlations between the location of the upper forest limit, the local topography and the geographical position. Furthermore, with a view to evaluate the upper forest limit change according to its potential climatic limit, the 10 °C July isotherm was estimated based on WorldClim climate data. In addition, the situations inside and outside the major protected areas were also analysed and discussed so as to assess the possible regional differences as related to human effects. The results revealed a continued downward shift in the mountain areas located below the 1600 m a.l.s., but significant advancement above these values, indicating regional differences in land-use intensity and land management. This study is aimed to increase further knowledge as to the upper forest limit in the European mountains and to provide a baseline for modelling future potential change according to the environmental and anthropogenic variability in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Álvarez DG (2017) Cartographic scale and minimum mapping unit influence on LULC modelling. In: Proceedings of the 3rd international conference on geographical information systems theory, applications and management (GISTAM 2017), pp 327–334. https://doi.org/10.5220/0006383003270334

  • Ameztegui A, Coll L, Brotons L, Ninot JM (2016) Land-use legacies rather than climate change are driving the recent upward shift of the mountain treeline in the Pyrenees. Glob Ecol Biogeogr 25:263–273. https://doi.org/10.1111/geb.12407

    Article  Google Scholar 

  • Bălteanu D, Ozenda P, Kuhn M, Kerschner H, Tranquillini W, Bortenschlarger S (1987) Impact analysis of climate change in the Central European mountain ranges. In: European workshop on interrelated bioclimatic and land use change, volume G, Noordwijkerhout, The Netherlands

  • Bălteanu D, Dumitraşcu M, Ciupitu D, Geacu S (2006) Protected natural areas. In: Bălteanu D et al (eds) Romania. Space, society, environment. The Publishing House of the Romanian Academy, Bucharest, pp 328–339

    Google Scholar 

  • Bălteanu D, Felciuc M, Dumitraşcu M, Grigorescu I (2016) Environmental changes in the Maramureş Mountains Natural Park. In: Zhelezov G (ed) Sustainable development in mountain regions, South-eastern Europe, vol IV. Springer, Berlin, pp 335–348. https://doi.org/10.1007/978-3-319-20110-8_23

    Chapter  Google Scholar 

  • Bândiu C, Doniţă N (1988) Molidişurile presubalpine din România, Edit. Ceres, Bucureşti (in Romanian)

    Google Scholar 

  • Bolli JC, Rigling A, Bugmann H (2007) The influence of changes in climate and land-use on regeneration dynamics of Norway spruce at the tree line in the Swiss Alps. Silva Fenn 41(1):55–70. https://doi.org/10.14214/sf.307

    Article  Google Scholar 

  • Bryn A, Potthoff K (2018) Elevational treeline and forest line dynamics in Norwegian mountain areas—a review. Landsc Ecol 33:1225–1245. https://doi.org/10.1007/s10980-018-0670-8

    Article  Google Scholar 

  • Burdenski T (2000) Evaluating univariate, bivariate and multivariate normality using graphical and statistical procedures. Mult Linear Regres Viewp 26(2):15–28

    Google Scholar 

  • Busuioc A, Caian M, Cheval S, Bojariu R, Boroneanț C, Baciu M, Dumitrescu A (2010) Variabilitatea și schimbarea climei în România. Editura Pro Universitaria, București, p 226 (in Romanian, summary in English)

  • Camarero JJ, Gazol A, Galván JD, Sangüesa-Barreda G, Gutiérrez E (2015) Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites. Glob Change Biol 21:738–749. https://doi.org/10.1111/gcb.12787

    Article  Google Scholar 

  • Cairns DM, Moen J (2004) Herbivory influences tree lines. J Ecol 92:1019–1024. https://doi.org/10.1111/j.1365-2745.2004.00945.x

    Article  Google Scholar 

  • Cuculeanu V, Bălteanu D (2005) Modificarea climei în România în context global. In: Silvologie, vol IV A, Pădurea și modificările de mediu, Editura Academiei Române, pp 50–56 (in Romanian, summary in English)

  • Cudlín P, Klopčič M, Tognetti R et al (2017) Drivers of treeline shift in different European mountains. Clim Res 73:135–150. https://doi.org/10.3354/cr01465

    Article  Google Scholar 

  • Czajka B, Łajczak A, Kaczka RJ (2015a) Geographical characteristics of the timberline in the Carpathians. Geogr Pol 88(2):35–54. https://doi.org/10.7163/GPol.0014

    Article  Google Scholar 

  • Czajka B, Łajczak A, Kaczka RJ, Nicia P (2015b) Timberline in the Carpathians: an overview. Geogr Pol 88(2):7–34. https://doi.org/10.7163/GPol.0013

    Article  Google Scholar 

  • Daubenmire R (1954) Alpine timberlines in the Americas and their interpretation. Butler Univ Bot Stud 11, art. 14, 119–136

  • Dezso Z, Bartholy J, Pongracz R, Barcza Z (2005) Analysis of land-use/land-cover change in the Carpathian region based on remote sensing techniques. Phys Chem Earth 30(1–3):109–115. https://doi.org/10.1016/j.pce.2004.08.017

    Article  Google Scholar 

  • Díaz-Varela RA, Colombo R, Meroni M, Calvo-Iglesias MS, Buffoni A, Tagliaferri A (2010) Spatio-temporal analysis of alpine ecotones: a spatial explicit model targeting altitudinal vegetation shifts. Ecol Model 221:621–633. https://doi.org/10.1016/j.ecolmodel.2009.11.010

    Article  Google Scholar 

  • Dincă L, Niță MD, Hofgaard A, Alados CL, Broll G, Borz SA, Wertz B, Monteiro AT (2017) Forests dynamics in the montane-alpine boundary: a comparative study using satellite imagery and climate data. Clim Res 73:97–110. https://doi.org/10.3354/cr01452

    Article  Google Scholar 

  • Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417. https://doi.org/10.1046/j.1365-2699.2003.00839.x

    Article  Google Scholar 

  • Drăghici CC, Andronache I, Ahammer H et al (2017) Spatial evolution of forest areas in the northern Carpathian Mountains of Romania. Acta Mont Slovaca 22(2):95–106

    Google Scholar 

  • Dumitraşcu M, Bălteanu D, Kucsicsa G, Popovici E-A (2016) Land use/cover changes in selected protected areas in Romania. In: 33rd international geographical congress “Shaping our Harmonious Worlds”, August 21–25, Beijing, China

  • Ellenberg H (1988) Vegetation ecology of Central Europe, 4th edn. Cambridge University Press, Edinburgh

    Google Scholar 

  • Feuillet T, Birre D, Milian J, Godard V, Clauzel C, Serrano-Notivoli S (2019) Spatial dynamics of alpine tree lines under global warming: what explains the mismatch between tree densification and elevational upward shifts at the tree line ecotone? J Biogeogr 00:1–13. https://doi.org/10.1111/jbi.13779

    Article  CAS  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Geacu S, Dumitrașcu M, Maxim I (2012) The evolution of the natural protected areas network in Romania. Rev Roum Géogr Rom J Geogr 56(1):33–41

    Google Scholar 

  • Geanana M (1972) L’influence de l’altitude et de la massivité sur la limite supérieure de la forêt dans les Carpates Roumaines, Travaux du Symposium de Géographie Physique des Carpates, pp 417–424 (in French)

  • Geanana M (1997) Contribuții privind dinamica limitei superioare a pădurii din Munții Retezat. Analele Universității din București, Geografie, Anul XLVI (in Romanian)

  • Geanana M (2004) Limita superioara a padurii in Muntii Retezat. Editura Universitatii București (in Romanian)

  • Gehrig-Fasel J, Guisan A, Zimmerman NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582. https://doi.org/10.1111/j.1654-1103.2007.tb02571.x

    Article  Google Scholar 

  • Gellrich M, Bauer P, Zimmerman NE, Koch B (2007) Agricultural land abandonment and natural forest re-growth in the Swiss mountains A spatially explicit economic analysis. Agric Ecosyst Environ 118(1–4):93–108. https://doi.org/10.1016/j.agee.2006.05.001

    Article  Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768. https://doi.org/10.1111/j.1466-8238.2010.00558.x

    Article  Google Scholar 

  • Grace J (1989) Tree lines. Philos Trans R Soc Lond B 324:233–245

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90(4):537–544. https://doi.org/10.1093/aob/mcf222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths P, Kuemmerle T, Kennedy RE, Abrudand IV, Knorn J, Hostert P (2012) Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens Environ 118:199–214. https://doi.org/10.1016/j.rse.2011.11.006

    Article  Google Scholar 

  • Griffiths P, Kuemmerle T, Baumann M et al (2013) Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens Environ 151:72–88. https://doi.org/10.1016/j.rse.2013.04.022

    Article  Google Scholar 

  • Guidi M, Piussi P (1993) The influence of old rural land-management practices on the natural regeneration of woodland on abandoned farmland in the Prealps of Fruili, Italy. In: Watkins C (ed) Ecological effects of afforestation: studies in the history and ecology of afforestation in Western Europe. C.A.B. International, Oxon, p 224

    Google Scholar 

  • Harsch MA, Bader MY (2011) Treeline form—a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20:582–596. https://doi.org/10.1111/j.1466-8238.2010.00622.x

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x

    Article  PubMed  Google Scholar 

  • Hofgaard A (1997) Inter-Relationships between treeline position, species diversity, land use and climate change in the Central Scandes Mountains of Norway. Glob Ecol Biogeogr Lett 6(6):419–429. https://doi.org/10.2307/2997351

    Article  Google Scholar 

  • Holtmeier FK (1973) Geoecological aspects of timberlines in Northern and Central Europe. Arct Alp Res 5(3):A45–A54

    Google Scholar 

  • Holtmeier FK (1974) Geooekologische Beobachtungen und Studien an der subarktischen und alpinen Waldgrenze in vergleichender Sicht. Franz Steiner, Wiesbaden

    Google Scholar 

  • Holtmeier FK, Broll G (2007) Treeline advance—driving processes and adverse factors. Landsc Online 1:1–33. https://doi.org/10.3097/LO.200701

    Article  Google Scholar 

  • Holtmeier FK, Broll G (2017) Treelines—approaches at different scales. Sustainability. https://doi.org/10.3390/su9050808

    Article  Google Scholar 

  • Innes JL (1991) High-altitude and high-latitude tree growth in relation to past, present and future global climate change. Holocene 1:168–173. https://doi.org/10.1177/095968369100100210

    Article  Google Scholar 

  • Iojă IC, Pătroescu M, Rozylowicz L, Popescu VD, Vergheleț M, Zotta MI, Felciuc M (2010) The efficacy of Romania’s protected areas network in conserving biodiversity. Biol Conserv 143(11):2468–2476. https://doi.org/10.1016/j.biocon.2010.06.013

    Article  Google Scholar 

  • Irimie DL, Essmann HF (2009) Forest property rights in the frame of public policies and societal change. Forest Policy Econ 11(2):95–101. https://doi.org/10.1016/j.forpol.2008.10.001

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) Global controls of forest line elevation in the northern and southern hemispheres. Glob Ecol Biogeogr 9(3):253–268. https://doi.org/10.1046/j.1365-2699.2000.00162.x

    Article  Google Scholar 

  • Kern Z, Popa I (2008) Changes of frost damage and treeline advance for Swiss Stone Pine in the Calimani Mts. (Eastern Carpathians, Romania). Acta Silvatica et Lignaria Hungarica 4:39–48

    Google Scholar 

  • Knorn J, Rabe A, Radeloff VC, Kuemmerle T, Kozak J, Hostert P (2009) Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sens Environ 113(5):957–964. https://doi.org/10.1016/j.rse.2009.01.010

    Article  Google Scholar 

  • Knorn J, Kuemmerle T, Radeloff VC, Szabo A, Mindrescu M, Keeton WS, Abrudan I, Griffiths P, Gancz V, Hostert P (2012) Forest restitution and protected area effectiveness in post-socialist Romania. Biol Conserv 146(1):204–212. https://doi.org/10.1016/j.biocon.2011.12.020

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459. https://doi.org/10.1007/s004420050540

    Article  PubMed  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732. https://doi.org/10.1111/j.1365-2699.2003.01043.x

    Article  Google Scholar 

  • Kricsfalusy V, Mróz W, Popov S (2008) Historical changes of the upper tree line in the Carpathian Mountains (Ukraine). Mt. Forum Bull 8(1)

  • Kucsicsa G (2011) Considerations on the timberline in the Rodna Mountains National Park. Rev Roum Géogr/Rom Journ Geogr 55(1):57–61

  • Kucsicsa G (2013) Parcul Naţional Munţii Rodnei. Relaţii om-mediu. Edit Universitară, Bucureşti, p. 168 (in Romanian, summary in English)

  • Kucsicsa G, Dumitrică C (2019) Spatial modelling of deforestation in Romanian Carpathian Mountains using GIS and Logistic Regression. J Mt Sci 16(5):1005–1022. https://doi.org/10.1007/s11629-018-5053-8

  • Kucsicsa G, Popovici E-A, Bălteanu D, Grigorescu I, Dumitrașcu M, Mitrică B (2019a) Future land use/cover changes in Romania: regional simulations based on CLUE-S model and CORINE land cover database. Landsc Ecol Eng 15(1):75–90. https://doi.org/10.1007/s11355-018-0362-1

    Article  Google Scholar 

  • Kucsicsa G, Popovici A-E, Bălteanu D, Dumitrașcu M, Grigorescu I, Mitrică B (2019b) Assessing the potential future forest cover change in Romania, predicted using scenario-based modelling. Environ Model Assess. https://doi.org/10.1007/s10666-019-09686-6

    Article  Google Scholar 

  • Kuemmerle T, Hostert P, Radeloff VC, Perzanowski K, Kruhlov I (2007) Postsocialist forest disturbance in the carpathian border region of Poland, Slovakia, and Ukraine. Ecol Appl 17(5):1279–1295. https://doi.org/10.1890/06-1661.1

    Article  PubMed  Google Scholar 

  • Kuemmerle T, Chaskovskyy O, Knorn J, Radeloff VC, Kruhlov I, Keeton W, Hostert P (2009) Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sens Environ 113(6):1194–1207. https://doi.org/10.1016/j.rse.2009.02.006

    Article  Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of trees and shrub species in the Swedish Scandes. J Ecol 90(1):68–77. https://doi.org/10.1046/j.0022-0477.2001.00630.x

    Article  Google Scholar 

  • Kyriazopoulos AP, Skre O, Sarkki S, Wielgolaski FE, Abraham EM, Ficko A (2017) Human-environment dynamics in European treeline ecosystems: a synthesis based on the DPSIR framework. Clim Res 73:17–29. https://doi.org/10.3354/cr01454

    Article  Google Scholar 

  • Leonelli G, Pelfini M, Morra di Cella U, Valentina Garavaglia V (2011) Climate warming and the recent tree line shift in the European Alps: the role of geomorphological factors in high-altitude sites. Ambio 40:264–273. https://doi.org/10.1007/s13280-010-0096-2

    Article  PubMed  Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2014) Remote sensing and image interpretation, 7th edn. Wiley, Hoboken, p 469

    Google Scholar 

  • Löffler J, Lundberg A, Rössler O, Bräuning A, Jung G, Pape R, Wundram D (2004) The alpine treeline under changing land use and changing climate: approach and preliminary results from continental Norway. Norw J Geogr 58(4):183–193. https://doi.org/10.1080/00291950410002421

    Article  Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870. https://doi.org/10.1080/01431160600746456

    Article  Google Scholar 

  • Malandra F, Vitali A, Urbinati C, Garbarino M (2018) 70 years of land use/land cover changes in the Apennines (Italy): a meta-analysis. Forests 9:551. https://doi.org/10.3390/f9090551

    Article  Google Scholar 

  • Martazinova V, Ivanova O, Shandra O (2011) Climate and treeline dynamics in the Ukrainian Carpathians Mts. Folia Oecol 38(1):65–71

    Google Scholar 

  • Mathisen IE, Mikheeva A, Tutubalina OV, Aune S, Hofgaard A (2013) Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroeological approaches. Appl Veg Sci 17:6–16. https://doi.org/10.1111/avsc.12038

    Article  Google Scholar 

  • Micu DM, Dumitrescu A, Cheval S, Bîrsan M-V (2015) Climate of the Romanian Carpathians. Variability and trends. Springer, Cham, p 213

    Google Scholar 

  • Mihai B, Savulescu I, Sandric I (2007) Change detection analysis (1986–2002) of vegetation cover in Romania. Mt Res Dev 27(3):250–258. https://doi.org/10.1659/mred.0645

    Article  Google Scholar 

  • Motta R, Morales M, Nola P (2006) Human land-use, forest dynamics and tree growth at the treeline in the Western Italian Alps. Ann For Sci 63:739–747. https://doi.org/10.1051/forest:2006055

    Article  Google Scholar 

  • Muică C (2016) Învelișul vegetal. In: Bălteanu D et al (eds) România. Natură și Societate. Editura Academiei Române, Bucharest, pp 167–183 (in Romanian, summary in English)

    Google Scholar 

  • Munteanu C, Kuemmerle T, Boltiziar M et al (2014) Forest and agricultural land change in the Carpathian region—a meta-analysis of long-term patterns and drivers of change. Land Use Policy 38:685–697. https://doi.org/10.1016/j.landusepol.2014.01.012

    Article  Google Scholar 

  • Palombo C, Chirici G, Marchetti M, Tognetti R (2013) Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosyst 147:1–11. https://doi.org/10.1080/11263504.2013.772081

    Article  Google Scholar 

  • Paulsen J, Weber UM, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arct Antarct Alp Res 32(1):14–20. https://doi.org/10.1080/15230430.2000.12003334

    Article  Google Scholar 

  • Peterson DL (1994) Recent changes in the growth and establishment of subalpine conifers in Western North America. In: Beniston M (ed) Mountain environments in changing climates. Routledge, London, pp 234–243

    Chapter  Google Scholar 

  • Petrişor AI (2015) Using CORINE data to look at deforestation in Romania: distribution & possible consequences. Urbanism 6(1):83–90

    Google Scholar 

  • Pietriși M (2010) Studiul fizico-geografic al Munților Godeanu cu privire la etajarea vegetației si limita superioară a pădurii, PhD thesis (in Romanian)

  • Popovici EA, Bălteanu D, Kucsicsa G (2013) Assessment of changes in land-use and land-cover pattern in Romania using Corine land cover database. Carpath J Earth Environ Sci 8(4):195–208

    Google Scholar 

  • Popovici E-A, Bălteanu D, Kucsicsa G (2016) Utilizarea terenurilor și dezvoltarea actuală a agriculturii. In: Bălteanu D et al (eds) România. Natură și Societate. Editura Academiei Române, Bucharest, pp 329–374 (in Romanian, summary in English)

    Google Scholar 

  • Posea Gr, Badea L (1984) România. Unitățile de relief (regionarea geomorfologică), Edit Științifică și Enciclopedică, București. (in Romanian)

  • Price M (2007) Integrated approaches to research and management in mountain areas: an introduction. In: Price M (ed) Mountain area research & management. Integrated approaches. Earthscan, London, pp 1–23

    Google Scholar 

  • Puig CJ, Hyman G, Bolaños S (2002) Digital classification vs. visual interpretation: a case study in humid tropical forests of the Peruvian amazon. In: Proceedings of 29th international symposium remote sensing of environment, XXIX, Buenos Aires, Argentina, 8–12

  • Rob M (2008) Natural superior limit of the forest in the Gutâi mountains. Studia Universitatis Vasile Goldis Seria StiinteVietii (Life Sciences Series) 18:325–331

    Google Scholar 

  • Rob M, Taut I (2007) Considerations concerning the altitudinal limit of the beech forests from the Gutâi mountains. Bull Univ Agric Sci Vet Med Cluj-Napoca Horticult 64(1–2):261–265

    Google Scholar 

  • Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9(11):1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x

    Article  Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broil G, Keplin B (eds) Mountain ecosystems. Studies in treeline ecology. Springer, Berlin, pp 275–354

    Chapter  Google Scholar 

  • Scuderi LA (1987) Late-Holocene upper timberline variation in the Southern Sierra Nevada, California, USA. Nature 325:242–244. https://doi.org/10.1038/325242a0

    Article  Google Scholar 

  • Shandra O, Weisberg P, Martazinova V (2013) Influences of climate and land use history on forest and timberline dynamics in the Carpathian Mountains during the twentieth century. In: Kozak J, Ostapowicz K, Bytnerowicz A, Wyżga B (eds) The Carpathians: integrating nature and society towards sustainability. Springer, Berlin, pp 209–223

    Chapter  Google Scholar 

  • Sitko I, Troll M (2008) Timberline changes in relation to summer farming in the Western Chornohora (Ukrainian Carpathians). Mt Res Dev 28:263–271. https://doi.org/10.1659/mrd.0963

    Article  Google Scholar 

  • Stöhr D (2007) Soils—heterogeneous at a microscale. In: Wieser G, Tausz M (eds) Trees at their upper limit. Tree life limitation at the alpine timberline. Springer, Dordrecht, pp 37–56

    Chapter  Google Scholar 

  • Tănase G (2013) Evoluția limitei superioare a pădurii în Masivul Giumalău în perioada 1855–2006. Rev Geoconcept 1:1–6 (in Romanian, summary in English)

    Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50(1–2):77–109. https://doi.org/10.1023/A:101063201

    Article  CAS  Google Scholar 

  • Toader T (2004) Vegetation zones In: Toader T, Dumitru I (coord) Romanian forests. National parks and natural parks. National Forest Administration ROMSILVA, Bucharest, pp 16–22

  • Török-Oance R, Török-Oance M (2012) Trends in land cover change in abandoned mountain pastures A case study: Măgura Marga Massif (the Southern Carpathians). Forum Geografic. Studii și cercetări de geografie și protecția mediului 11(2):214–223. https://doi.org/10.5775/fg.2067-4635.2012.084.d

    Article  Google Scholar 

  • Tuhkanen S (1993) Treeline in relation to climate, with special reference to oceanic areas. In: Alden J, Mastrantonio JL, Ødum S (eds) Forest development in cold climates. NATO ASI Series, 244. Plenum Press, New York, pp 115–134

    Chapter  Google Scholar 

  • Vanonckelen S, Rompaey AV (2015) Spatiotemporal analysis of the controlling factors of forest cover change in the Romanian Carpathian Mountains. Mt Res Dev 35(4):338–350. https://doi.org/10.1659/MRD-JOURNAL-D-15-00014

    Article  Google Scholar 

  • Vitali A, Urbinati C, Weisberg PJ, Urza AK, Garbarino M (2018) Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy). J Veg Sci 29:189–199. https://doi.org/10.1111/jvs.12598

    Article  Google Scholar 

  • Voiculescu M (2000) Tipuri de limită superioară a pădurii în Masivul Făgăras, Geographica Timisiensis 8–9:157–174 (in Romanian, summary in English)

  • Wallentin G, Tappeiner U, Strobl J, Tasser E (2008) Understanding alpine tree line dynamics: an individual-based model. Ecol Model 218:235–246. https://doi.org/10.1016/j.ecolmodel.2008.07.005

    Article  Google Scholar 

  • Walther P (1986) Land abandonment in the Swiss Alps a new understanding of a land-use problem. Mt Res Dev 6(4):305–314. https://doi.org/10.2307/3673371

    Article  Google Scholar 

  • Wardle P (1971) An explanation for alpine timberline. N Z J Bot 9(3):371–402. https://doi.org/10.1080/0028825X.1971.10430192

    Article  Google Scholar 

  • Weisberg PJ, Shandra O, Becker ME (2013) Landscape influences on recent timberline shifts in the Carpathian Mountains: abiotic influences modulate effects of land-use change. Arct Antarct Alp Res 45(3):404–414. https://doi.org/10.1657/1938-4246-45.3.404

    Article  Google Scholar 

  • Wieser G, Tausz M (2007) Global change at the upper timberline. In: Wieser G, Tausz M (eds) Trees at their upper limit. Tree life limitation at the alpine timberline. Springer, Dordrecht, pp 197–217

    Chapter  Google Scholar 

  • Zanella L, Sousa CHR, Souza CG, Carvalho LMT, Borém RAT (2012) A comparison of visual interpretation and object based image analysis for deriving landscape metrics. In: Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, pp 509–514

  • Zhang Z, Wang X, Zhao X, Liu B, Yi L, Zuo L, Wen Q, Liu F, Xu J, Hu S (2014) A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images. Remote Sens Environ 149:142–154. https://doi.org/10.1016/j.rse.2014.04.004

    Article  Google Scholar 

Download references

Acknowledgements

The current research was conducted within the scope of the research project as part of the research programme of the Institute of Geography, the Romanian Academy: “The National Geographic Atlas of Romania”. The authors would like to thank the EU Copernicus Programme under the European Space Agency (https://scihub.copernicus.eu/dhus/#/home) for supplying the Sentinel-2A satellite images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Bălteanu.

Additional information

Communicated by Lluís Coll.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucsicsa, G., Bălteanu, D. The influence of man-induced land-use change on the upper forest limit in the Romanian Carpathians. Eur J Forest Res 139, 893–914 (2020). https://doi.org/10.1007/s10342-020-01293-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-020-01293-5

Keywords

Navigation