Skip to main content

Advertisement

Log in

Assessing the Potential Future Forest-Cover Change in Romania, Predicted Using a Scenario-Based Modelling

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Forest-cover dynamics is of wide concern due to its role in climate change, biodiversity losses, water balance and land degradation, as well as social and economic development. Hence, exploring land-use/cover dynamic is important in order to improve our understanding of the causes of forest-cover change and to detect the future trend. Furthermore, projecting a future land-use/cover pattern can help identifying potential areas where forest-cover change will occur in the future and the potential consequences of these processes in order to improve land-use planning and policies. Similar to other East European countries, Romania is experiencing rapid land-use/cover changes after the breakdown of socialism; a clear trend was registered by deforestation, which reflects the consequences of a continuous forests dynamics and little environmental care. Consequently, this study, carried out in order to analyse the potential future cover-change, resulted in the land-use/cover scenario (2007–2050) simulated using CLUE-S (the Conversion of Land Use and its Effects at Small regional extent) modelling framework, applied to development regions in Romania. Overall, the model results in different spatial patterns of land-use/cover change, projecting a slight increase in the forest-cover area of about 82,000 ha. Furthermore, the model simulated widespread deforestation, mainly in relation to agricultural land expansion. The area under the curve (AUC) for the relative operating characteristic (ROC) and the Kappa simulation (KSimulation) were used to assess the predictive power of the determinant factors included and to evaluate the spatial performance of the model. The obtained ROC/AUC values (0.83–0.88) indicate the great power of the determinant factors to explain the forest-cover pattern in the area. Furthermore, the KSimulation scores (0.69–0.79) highlight the potential of the CLUE-S model to simulate future forest-cover change in relation to the other land-use/cover categories. The results can provide useful inputs for effective forest resource management and environmental policies. Moreover, the spatial data obtained can contribute to exploring future potential environmental implications (e.g. assessing landslide and flood hazard scenarios, forest biomass dynamics and their impact on carbon allocation, or the impact of forest-cover change on ecosystem services).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Angelsen, A., & Kaimowitz, D. (1999). Rethinking the causes of deforestation: lessons from Economic Models. The World Bank Research Observer, 14, 73–98.

    CAS  Google Scholar 

  2. Bălteanu, D., & Popovici, E. A. (2010). Land use changes and land degradation in post–socialist Romania. Romanian Journal of Geography, 54(2), 95–105.

    Google Scholar 

  3. Bălteanu, D., Dumitraşcu, M., Ciupitu, D., & Geacu, S. (2006a). Protected natural areas. In D. Bălteanu, L. Badea, M. Buza, G. Niculescu, C. Popescu, & M. Dumitrașcu (Eds.), Romania. Space, Society, Environment (pp. 328–339). Bucharest: The Publishing House of the Romanian Academy.

    Google Scholar 

  4. Bălteanu, D., Dumitraşcu, M., Geacu, S., & Ciupitu, D. (2006b). Ariile naturale protejate. In D. Bălteanu, M. Dumitrașcu, S. Geacu, B. Mitrică, & M. Sima (Eds.), România. Spațiu și Societate (pp. 542–562). Bucharest: Edit. Academiei Române (in Romanian).

    Google Scholar 

  5. Bălteanu, D., Chendeș, V., Sima, M., & Enciu, P. (2010). A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology, 124, 1012–1112.

    Google Scholar 

  6. Bălteanu, D., Felciuc, M., Dumitraşcu, M., & Grigorescu, I. (2016a). Environmental changes in the Maramureş Mountains Natural Park. In G. Zhelezov (Ed.), Sustainable development in mountain regions, Southestern Europe (Vol. IV, pp. 335–348). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-20110-8_23 http://link.springer.com/book/10.1007/978-3-319-20110-8. Accessed 15 May 2018.

    Chapter  Google Scholar 

  7. Bălteanu, D., Sima, M., Jurchescu, M., et al. (2016b). Natural and technological hazards. In D. Bălteanu et al. (Eds.), Romania. Nature and Society (pp. 563–592). Bucharest: The Publishing House of the Romanian Academy (In Romanian).

    Google Scholar 

  8. Bax, V., Francesconi, W., & Quintero, M. (2016). Spatial modeling of deforestation processes in the Central Peruvian Amazon. Journal for Nature Conservation, 29, 79–88.

    Google Scholar 

  9. Bogdan, O., Dragotă, C., & Micu, D. (2016). Potențialul climatic. In D. Bălteanu, M. Dumitraşcu, S. Geacu, B. Mitrică, & M. Sima (Eds.), România. Natură şi Societate (pp. 102–130). Bucharest: Edit. Academiei Române (in Romanian).

    Google Scholar 

  10. Büttner, G., Feranec, J., Jaffrain, G., et al. (2004). The CORINE land cover 2000 project. EARSeL eProceedings, 3(3), 331–346.

    Google Scholar 

  11. Clark, W. A. V., & Hosking, P. L. (1986). Statistical methods for geographers. NewYork: Wiley.

    Google Scholar 

  12. Cohen, J. (1960). A coefficient of agreement for nominal scale. Educational and Psychological Measurement, 20, 37–46.

    Google Scholar 

  13. Dincă, L., Niță, M. D., Hofgaard, A., Alados, C. L., Broll, G., Borz, S. A., Wertz, B., & Monteiro, A. T. (2017). Forests dynamics in the montane–alpine boundary: a comparative study using satellite imagery and climate data. Climate Research, 73, 97–110.

    Google Scholar 

  14. Dogaru, D., & Kucsicsa, G. (2015). Using multiple linear regressions to derive cropland and pasture proportion maps in Romania. Roumaine de Géographie/Romanian Journal of Geography, 59(2), 101–109.

    Google Scholar 

  15. Dumitraşcu, M., Bălteanu, D., Kucsicsa, G., & Popovici, E. –A. (2016). Land use/cover changes in selected protected areas in Romania, 33rd International Geographical Congress “Shaping our Harmonious Worlds”, August 21-25, Beijing, China.

  16. Dutcă, I., & Abrudan, I. V. (2010). Estimation of forest land–cover change in Romania, between 1990 and 2006. Bulletin of the Transilvania University of Brasov, 3(52), 33–36.

    Google Scholar 

  17. Eastman, J. R., Solorzano, L. A., & van Fossen, M. E. (2005). Transition potential modeling for land-cover change. In D. J. Maguire, M. Batty, & M. F. Goodchild (Eds.), GIS, spatial analysis, and modeling (pp. 357–385). California, 2005: ESRI Press.

    Google Scholar 

  18. Feranec, J., Jaffrain, G., Soukup, T., & Hazeu, G. (2010). Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Applied Geography, 30, 19–35.

    Google Scholar 

  19. Feranec, J., Soukup, T., Taff, G. N., Stych, P., & Bicik, I. (2017). Overview of changes in land use and land cover in Eastern Europe. In G. Gutman & V. Radeloff (Eds.), Land-cover an land-use changes in Eastern Europe after the collapse of the Soviet Union in 1991 (Vol. VIII, pp. 13–33). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-42638-9_2.

    Chapter  Google Scholar 

  20. Fischer, M., Rudmann-Maurer, K., Weyand, A., & Stöcklin, J. (2008). Agricultural land use and biodiversity in the Alps. Mountain Research and Development, 28, 148–155. https://doi.org/10.1659/mrd.0964.

    Article  Google Scholar 

  21. Gaston, G., Brown, S. A., Lorenzini, M., et al. (1998). State and change in carbon pools in the forests of tropical Africa. Global Change Biology, 4(1), 97–114. https://doi.org/10.1046/j.1365-2486.1998.00114.x.

    Article  Google Scholar 

  22. Geacu, S., Dumitraşcu, M., & Grigorescu, I. (2018). On the biogeographical significance of protected forest areas in Southern Romania. Sustainability, 10(7), 2282. https://doi.org/10.3390/su10072282.

    Article  Google Scholar 

  23. Gehrig-Fasel, J., Guisan, A., & Zimmermann, N. E. (2007). Tree line shifts in the European Alps: climate change or land abandonment? Journal of Vegetation Science, 18, 571–582.

    Google Scholar 

  24. General Inspectorate for Emergency Situations. 2016. Country report 5.1 Conditionality Romania, National Risk Assessment – RO RISK project (co–financed under EFS through the Operational Program Administrative Capacity 2014 – 2020), https://www.igsu.ro/documente/RO–RISK/Raport_Final_de_tara.pdf. Accessed 20 April 2018.

  25. Ghimire, S., Higaki, D., & Bhattarai, T. (2013). Estimation of soil erosion rates and eroded sediment in a degraded catchment of the Siwalik Hills, Nepal. Land, 2, 370–391.

    Google Scholar 

  26. Glade, T. (2003). Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena, 51, 297–314.

    Google Scholar 

  27. Griffiths, P., Kuemmerle, T., Kennedy, R. E., Abrudan, I. V., Knorn, J., & Hostert, P. (2012). Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sensing of Environment, 118, 199–214. https://doi.org/10.1016/j.rse.2011.11.006.

    Article  Google Scholar 

  28. Griffiths, P., Mueller, D., Kuemmerle, T., et al. (2013). Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environmental Research Letters, 8, 1–12. https://doi.org/10.1088/1748-9326/8/4/045024.

    Article  Google Scholar 

  29. Grigorescu, I., & Geacu, S. (2017). The dynamics and conservation of forest ecosystems in Bucharest Metropolitan Area. Urban Forestry & Urban Greening, 27, 90–99.

    Google Scholar 

  30. Grigorescu, I., Kucsicsa, G., Popovici, E.-A., Mitrică, B., Dumitrașcu, M., & Mocanu, I. (2018). Regional disparities in the urban sprawl phenomenon in Romania using CORINE land cover database. Roumaine de Géographie/Romanian Journal of Geography, 62(2), 169–184.

    Google Scholar 

  31. Gubbi, S. (2012). Patterns and correlates of human–elephant conflict around a south Indian reserve. Biological Conservation, 148(1), 88–95.

    Google Scholar 

  32. Halmy, M. W., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112.

    Google Scholar 

  33. Hanganu, J., & Constantinescu, A. (2015). Land cover changes in Romania based on Corine land cover inventory 1990–2012. Roumaine de Géographie/Romanian Journal of Geography, 59(2), 111–116.

    Google Scholar 

  34. Iojă, I. C., Pătroescu, M., Rozylowicz, L., et al. (2010). The efficacy of Romania’s protected areas network in conserving biodiversity. Biological Conservation, 143(11), 2468–2476. https://doi.org/10.1016/j.biocon.2010.06.013.

    Article  Google Scholar 

  35. Ioras, F., Abrudan, I., Dautbasic, M., Avdibegovic, M., Gurean, D., & Ratnasingam, J. (2009). Conservation gains through HCVF assessments in Bosnia-Herzegovina and Romania. Biodiversity and Conservation, 18, 3395–3406.

    Google Scholar 

  36. Irimie, D. L., & Essmann, H. F. (2009). Forest property rights in the frame of public policies and societal change. Forest Policy and Economics, 11(2), 95–101.

    Google Scholar 

  37. Kim, I., Le, Q. B., Park, S. J., Tenhunen, J., & Koellner, T. (2014). Driving forces in archetypical land-use changes in a mountainous watershed in East Asia. Land, 3, 957–980. https://doi.org/10.3390/land3030957.

    Article  Google Scholar 

  38. Knorn, J., Kuemmerle, T., Radeloff, V. C., Szabo, A., Mindrescu, M., Keeton, W. S., Abrudan, I., Griffiths, P., Gancz, V., & Hostert, P. (2012). Forest restitution and protected area effectiveness in post–socialist Romania. Biological Conservation, 146(1), 204–212.

    Google Scholar 

  39. Koranteng, A., & Zawila-Niedzwiecki, T. (2011). Modelling forest loss and other land use change dynamics in Ashanti Region of Ghana. Folia Forestalia Polonica, Series A, 57(2), 96–111.

    Google Scholar 

  40. Körner, C. (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445–459.

    Google Scholar 

  41. Körner, C., Ohsawa, M., & Spehn, E. (2005). Mountain systems. In R. Hassan, R. Scholes, & N. Ash (Eds.), Ecosystems and human well-being: current state and trends. Findings of the Conditions and Trends Working Group of the Millennium Ecosystem Assessment (pp. 681–716). Washington, DC: Island Press.

    Google Scholar 

  42. Kucsicsa, G., & Dumitrică, C. (2019). Spatial modelling of deforestation in Romanian Carpathian mountains using GIS and logistic regression. Journal of Mountain Science, 16(5), 1005–1022. https://doi.org/10.1007/s11629-018-5053-8.

    Article  Google Scholar 

  43. Kucsicsa, G., Bălteanu, D., Popovici, E.-A., & Damian, N. (2015). Land use/cover changes along the Romanian Danube Valley. In Bicik et al. (Eds.), Land use/cover changes in selected regions in the world, Edition: XI, Chapter: 1 (pp. 7–18). International geographical Union Commission on Land Use and Land Cover Change (IGU-LUCC).

  44. Kucsicsa, G., Popovici, E. A., Bălteanu, D., Grigorescu, I., Dumitrașcu, M., & Mitrică, B. (2019). Future land use/cover changes in Romania: regional simulations based on CLUE-S model and CORINE land cover database. Landscape and Ecological Engineering, 15(1), 75–90. https://doi.org/10.1007/s11355-018-0362-1.

    Article  Google Scholar 

  45. Kuemmerle, T., Chaskovskyy, O., Knorn, J., et al. (2009). Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, 113(6), 1194–1112. https://doi.org/10.1016/j.rse.2009.02.006.

    Article  Google Scholar 

  46. Kuemmerle, T., Hostert, P., Radeloff, V.C., Perzanowski, K., Kruhlov, I. (2007). Post-Socialist Forest Disturbance in the Carpathian Border Region of Poland, Slovakia, and Ukraine, Ecological Applications, 17(5), 1279–1295

  47. Kumar, R., Nandy, S., Agarwal, R., & Kushwaha, S. P. S. (2014). Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecological Indicators, 45, 444–455.

    Google Scholar 

  48. Lambin, E. F. (1994). Modelling deforestation processes, a review, EUR 15744 EN, TREES series B: Research Report No. 1. Joint Research Centre, Institute for Remote Sensing Applications; European Space Agency, Luxembourg, Office for Official Publications of the European Community, p. 128.

  49. Lambin, E. F., & Geist, H. (Eds.). (2006). Land use and land cover change: local processes and global impacts, Global Change – The IGBP Series. New York: Springer 2006.

    Google Scholar 

  50. Lambin, E. F., Rounsevell, M., & Geist, H. (2000). Are current agricultural land use models able to predict changes in land use intensity? Agriculture, Ecosystems and Environment, 1653, 1–11.

    Google Scholar 

  51. Lambin, E. F., Turner II, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O., Dirzo, R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon, J., Leemans, R., Li, X. B., Moran, E. F., Mortimore, M., Ramakrishnan, P. S., Richards, J. F., Skanes, H., Stone, G. D., Svedin, U., Veldkamp, A., Vogel, C., & Xu, J. C. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 4, 261–269.

    Google Scholar 

  52. Liu, M., Hu, Y., Chang, Y., He, X., & Zhang, W. (2009). Land use and land cover change analysis and prediction in the upper reaches of the Minjiang River, China. Environmental Management, 43, 899–907. https://doi.org/10.1007/s00267-008-9263-7.

    Article  Google Scholar 

  53. MacDonald, D., Crabtree, J., Wiesinger, G., Dax, T., Stamou, N., Fleury, P., Gutierrez Lazpita, J., & Gibon, A. (2000). Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. Journal of Environmental Management, 59, 47–69. https://doi.org/10.1006/jema.1999.0335.

    Article  Google Scholar 

  54. Malek, Ž., Boerboom, L., & Glade, T. (2015). Future forest cover change scenarios with implications for landslide risk: an example from Buzău Subcarpathians, Romania. Environmental Management, 56, 1228–1243. https://doi.org/10.1007/s00267-015-0577-y.

    Article  Google Scholar 

  55. Malek, Ž., Zumpano, V., & Hussin, H. (2018). Forest management and future changes to ecosystem services in the Romanian Carpathians. Environment, Development and Sustainability, 20(3), 1275–1291. https://doi.org/10.1007/s10668-017-9938-4.

    Article  Google Scholar 

  56. Mantescu, L., & Vasile, M. (2009). Property reforms in rural Romania and community-based forests. Sociologie Românească, 7(2), 95–113.

    Google Scholar 

  57. Manuschevich, D., & Beier, C. M. (2016). Simulating land use changes under alternative policy scenarios for conservation of native forests in south-central Chile. Land Use Policy, 51, 350–362.

    Google Scholar 

  58. Mas, J. F., & Puig, H. (2001). Modalities of deforestation in south-western Campeche State, Mexico. Canadian Journal of Forest Research, 31(7), 1280–1288. https://doi.org/10.1139/x01-055 (In French).

    Article  Google Scholar 

  59. Mas, J. F., Filho, B. S., Pontius Jr., R. G., Gutiérrez, M. F., & Rodrigues, H. (2013). A suite of tools for ROC analysis of spatial models. ISPRS International Journal of Geo-Information, 2, 869–887.

    Google Scholar 

  60. Menard, S. (2002). Applied logistic regression analysis, Quantitative applications in the social sciences (2nd ed.). London: Sage Publications.

    Google Scholar 

  61. Mihai, B., Săvulescu, I., Şandric, I., & Oprea, R. (2006). Application of change detection to the study of vegetation dynamics in the Bucegi Mountains (Southern Carpathians, Romania). Teledetection, 6, 215–231.

    Google Scholar 

  62. Munteanu, C., Niță, M.D., Abrudan, I.V., Radeloff, C.V. (2016). Historical forest management in Romania is imposing strong legacies on contemporary forests and their management, Forest Ecology and Management 361, 179–193.

  63. Munteanu, C., Kuemmerle, T., Keuler, N. S., et al. (2015). Legacies of 19th century land use shape contemporary forestcover. Global Environmental Change, 34, 83–94. https://doi.org/10.1016/j.gloenvcha.2015.06.015.

    Article  Google Scholar 

  64. Nandy, S., Kushwaha, S. P. S., & Mukhopadhyay, S. (2007). Monitoring Chilla-Motichur corridor using geospatial tools. Journal for Natural Conservation, 15(4), 237–244. https://doi.org/10.1016/j.jnc.2007.03.003.

    Article  Google Scholar 

  65. Năstase, M., Kucsicsa, G., & Grigorescu, I. (2010). GIS-based assessment of the main environmental issues in “Munţii Maramureşului” Natural Park, Proceedings of BALWOIS, Conference on Water Observation and Information Systems for Decision Support, Ohrid, Macedonia (online) http://balwois.com/balwois/administration/full_paper/ffp-1612.pdf. Accessed 5 March 2018.

  66. Nichiforel, L., & Schanz, H. (2011). Property rights distribution and entrepreneurial rent-seeking in Romanian forestry: a perspective of private forest owners. European Journal of Forest Research, 130, 369–381.

    Google Scholar 

  67. Noss, R. F., & Cooperrider, A. Y. (1994). Saving Nature’s legacy: protecting and restoring biodiversity. Washington DC: Island Press.

    Google Scholar 

  68. Păltineanu, C., Mihailescu, I., Prefac, Z., Dragotă, C., Vasenciuc, F., & Claudia, N. (2009). Combining the standardized precipitation index and climatic water deficit in characterizing droughts: a case study in Romania. Theoretical and Applied Climatology, 97(3-4), 219–233.

    Google Scholar 

  69. Petrişor, A. I. (2015a). Using CORINE data to look at deforestation in Romania: distribution & possible consequences. Urbanism, 6(1), 83–90.

    Google Scholar 

  70. Petrişor, A. I. (2015b). Land cover and land use changes reflecting the environmental impacts of local declining economies. Case-study: south-west development region. Romania. Rev. Roum. Géogr./Rom. Journ. Geogr, 59(1), 29–39.

    Google Scholar 

  71. Petrişor, A. I., & Petrişor, L. E. (2018). Transitional dynamics based trend analysis of land cover and use changes in Romania during 1990-2012. PESD, 12(2), 215–231. https://doi.org/10.2478/pesd-2018-0042.

    Article  Google Scholar 

  72. Pontius Jr., G. R., & Schneider, C. L. (2001). Land–cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment, 85, 239–248.

    Google Scholar 

  73. Popescu, C., & Săgeată, R. (2016). Regiunile de dezvoltare şi politica de dezvoltarea regională. In România. Natură şi Societate (pp. 609–612). Bucharest: The Publishing House of the Romanian Academy.

    Google Scholar 

  74. Popovici, E.-A., Bălteanu, D., & Kucsicsa, G. (2013). Assessment of changes in land–use and land–cover pattern in Romania using Corine Land Cover database. Carpathian Journal of Earth and Environmental Sciences, 8(4), 195–208.

    Google Scholar 

  75. Popovici, E.-A., Bălteanu, D., & Kucsicsa, G. (2016). Utilizarea terenurilor și dezvoltarea actuală a agriculturii. In D. Bălteanu, M. Dumitrașcu, S. Geacu, B. Mitrică, & M. Sima (Eds.), România. Spațiu și Societate (pp. 329–374). Bucharest: Edit. Academiei Române (in Romanian).

    Google Scholar 

  76. Popovici, E.-A., Kucsicsa, G., Bălteanu, D., Grigorescu, I., Mitrică, B., Dumitrașcu, M., & Damian, N. (2018). Past and future land use/cover flows related to agricultural lands in Romania. An assessment using CLUE-S Model and CORINE Land Cover Database. Carpathian Journal of Earth and Environmental Sciences, 13(2), 613–628. https://doi.org/10.26471/cjees/2018/013/052.

    Article  Google Scholar 

  77. Prăvalie, R., Sîrodoev, R., & Peptenatu, D. (2014). Changes in the forest ecosystems in areas impacted by aridization in south-western Romania. Journal of Environmental Health Science and Engineering, 12, 2. https://doi.org/10.1186/2052-336X-12-2.

    Article  Google Scholar 

  78. Promper, C., Puissant, A., Malet, J.-P., & Glade, T. (2014). Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Applied Geography, 53, 11–19.

    Google Scholar 

  79. Săvulescu, I., & Mihai, B. (2011). Geographic information system (GIS) application for windthrow mapping and management in Iezer Mountains, Southern Carpathians. Journal of Forestry Research, 23(2), 175–184.

    Google Scholar 

  80. Schaldach, R., & Priess, J. A. (2008). Integrated models of the land system: a review of modelling approaches on the regional to global scale. Living Reviews in Landscape Research, 2(1), 1–34.

    Google Scholar 

  81. Schelhaas, M. J., Nabuurs, G. J., & Schuck, A. (2003). Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology, 9(11), 1620–1633.

    Google Scholar 

  82. Shandra, O., Weisberg, P., & Martazinova, V. (2013). Influences of climate and land use history on forest and timberline dynamics in the Carpathian Mountains during the twentieth century. In J. Kozak, K. Ostapowicz, A. Bytnerowicz, & B. Wyzga (Eds.), The Carpathians: integrating nature and society towards sustainability (pp. 209–223). Berlin Heidelberg: Springer.

    Google Scholar 

  83. Strimbu, B. M., Hickey, G. M., & Strimbu, V. G. (2005). Forest conditions and management under rapid legislation change in Romania. The Forestry Chronicle, 81(3), 350–358.

    Google Scholar 

  84. Sun, J., & Southworth, J. (2013). Remote sensing–based fractal analysis and scale dependence associated with forest fragmentation in an Amazon tri–national frontier. Remote Sensing, 5, 454–472.

    Google Scholar 

  85. Toader, T., Dumitru, I. (2005). Romanian forests. In: National Parks and Natural Parks, Romsilva, Bucharest

  86. Turnock, D. (2002). Ecoregion-based conservation in the Carpathians and the land use implications. Land Use Policy, 19(1), 47–63. https://doi.org/10.1016/S0264-8377(01)00039-4.

    Article  Google Scholar 

  87. van Vliet, J. (2013). Calibration and validation of land­use models, Ph.D. thesis, Wageningen University, Wageningen, The Netherlands, 162 p.

  88. van Vliet, J., Bregtb, A. K., & Hagen-Zankerc, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological Modelling, 222(2011), 1367–1375. https://doi.org/10.1016/j.ecolmodel.2011.01.017.

    Article  Google Scholar 

  89. Vanonckelen, S., & Rompaey, A. V. (2015). Spatiotemporal analysis of the controlling factors of forest cover change in the Romanian Carpathian Mountains. Mountain Research and Development, 35(4), 338–350. https://doi.org/10.1659/MRD-JOURNAL-D-15-00014.

    Article  Google Scholar 

  90. Veldkamp, A., & Fresco, L. O. (1996). CLUE: a conceptual model to study the conversion of land use and its effects. Ecological Modeling, 85, 253–270.

    Google Scholar 

  91. Veldkamp, A., & Lambin, E. (2001). Predicting land-use change. Agriculture, Ecosystems and Environment, 85, 1–6. https://doi.org/10.1016/S0167-8809(01)00199-2.

    Article  Google Scholar 

  92. Veldkamp, A., Verburg, P. H., Kok, K., Koning, G. H. J., Priess, J., & Bergsma, A. R. (2001). The need for scale sensitive approaches in spatially explicit land use change modelling. Environmental Modeling and Assessment, 6, 111–121.

    Google Scholar 

  93. Verburg, P. H. (2010). The CLUE Modeling Framework – course material (53 p). Amsterdam: Institute for Environmental Studies, University Amsterdam.

    Google Scholar 

  94. Verburg, P. H., & Overmars, K. P. (2009). Combining top–down and bottom–up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna–CLUE model. Landscape Ecology, 24(9), 1167–1181.

    Google Scholar 

  95. Verburg, P. H., & Veldkamp, A. (2004). Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landscape Ecology, 19, 77–98.

    Google Scholar 

  96. Verburg, P. H., Soepboer, W., Limpiada, R., Espaldon, M. V. O., Sharifa, M., & Veldkamp, A. (2002). Land use change modelling at the regional scale: the CLUE–S model. Environmental Management, 30, 391–405.

    Google Scholar 

  97. Verburg, P. H., van Eck, J. R. R., de Nijs, T. C. M., Dijst, M. J., & Schot, P. (2004a). Determinants of land-use change patterns in the Netherlands. Environment and Planning. B, Planning & Design, 31, 125–150. https://doi.org/10.1068/b307.

    Article  Google Scholar 

  98. Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004b). Land use change modelling: current practice and research priorities. GeoJournal, 61, 309–324.

    Google Scholar 

  99. Verburg, P. H., van de Steeg, J., & Schulp, N. (2005). Manual for the CLUE-Kenya application (p. 54). Wageningen: Wageningen University, Department of Environmental Sciences.

    Google Scholar 

  100. Visser, H., & de Nijs, A. C. M. (2006). The Map Comparison Kit. Environmental Modelling and Software, 21(3), 346–358. https://doi.org/10.1016/j.envsoft.2004.11.013.

    Article  Google Scholar 

  101. Wassenaar, T., Gerber, P., Verburg, P. H., Rosales, M., Ibrahim, M., & Steinfeld, H. (2007). Projecting land use changes in the Neotropics: the geography of pasture expansion into forest. Global Environmental Change, 17(1), 86–104.

    Google Scholar 

  102. Willemen, L., Verburg, P. H., Castella, J.- C., & Nguyen, V. (2002). Modelling of land cover changes with CLUE-S in Bac Kan province, Vietnam. SAM Paper Series, 17.

  103. Wu, J., & Hobbs, R. (2002). Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecology, 17, 355–365.

    Google Scholar 

  104. Zimmermann, P., Tasser, E., Leitinger, G., & Tappeiner, U. (2010). Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agriculture, Ecosystems and Environment, 139, 13–22. https://doi.org/10.1016/j.agee.2010.06.010.

    Article  Google Scholar 

  105. Zumpano, V., Pisano, L., Malek, Ž., Micu, M., Aucelli, P. P. C., Rosskopf, C. M., Bălteanu, D., & Parise, M. (2018). Economic losses for rural land value due to landslides. Frontiers in Earth Science, 6, 97. https://doi.org/10.3389/feart.2018.00097.

    Article  Google Scholar 

Download references

Acknowledgements

The paper was elaborated within the framework of the RO-RISK Project – SIPOCA 30 and the project “Atlas of Environment –Landslides Risk Assessment” – a fundamental study made under the research plan of the Romanian Academy’s Institute of Geography. The authors would like to thank the IVM Institute for Environmental Studies (http://www.ivm.vu.nl/en/Organisation/departments/spatial-analysis-decision-support/Clue) for its support of the full CLUE soft version and the European Environment Agency (Copernicus Land Monitoring Service) for the provision of a CLC database (https://land.copernicus.eu/pan-european/corine-land-cover/view) and EU-Hydro River Network (https://land.copernicus.eu/pan-european/satellitederived-products/eu-hydro).

The authors would also like to thank the anonymous reviewers for their suggestions on a previous draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Dumitraşcu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucsicsa, G., Popovici, EA., Bălteanu, D. et al. Assessing the Potential Future Forest-Cover Change in Romania, Predicted Using a Scenario-Based Modelling. Environ Model Assess 25, 471–491 (2020). https://doi.org/10.1007/s10666-019-09686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09686-6

Keywords

Navigation