Skip to main content

Advertisement

Log in

Understory response to overstory and soil gradients in mixed versus monospecific Mediterranean pine forests

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Many studies highlight the role of mixed versus monospecific forests to provide numerous ecosystem services. Most reports of the positive effects of tree mixture on biodiversity focus on coniferous–deciduous combinations, but little is known about the effects of mixtures combining two coniferous tree species. We assessed the effects of mixed versus monospecific stands of Pinus sylvestris and P. pinaster on the understory richness and composition and its relationship with the soil status, based on research with six triplets in northern Spain. In ten square meter quadrats randomly located per plot, the cover of every understory vascular plant species was estimated visually and data were codified according to Raunkiær’s life-forms. One soil pit of 50 cm depth was dug in each plot to determine the soil water (water holding capacity) and fertility (carbon and exchangeable cations stocks) status. A water-stress gradient associated with the overstory composition indicated that P. pinaster tolerates lower soil water content than P. sylvestris. Mixed stands are under greater water stress than monospecific P. sylvestris stands but maintain the same level of understory richness. Also, a soil fertility gradient defined by organic carbon and exchangeable magnesium stocks was identified. Hemicryptophytes, whose abundance is greater in mixed stands, were the only understory life-form positively correlated to soil fertility. We conclude that the mixture of both Pinus species should continue to be favored in the study area because it helps to maintain understory richness under greater water-stress conditions and improves soil fertility.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

We would like to thank Luis Alfonso Ramos Calvo for his invaluable help with soil sampling, Carmen Blanco and Juan Carlos Arranz for their advice in the laboratory analyses, José Riofrío and Cristóbal Ordoñez for their assistance in location of plots in the field, and Juan Manuel Diez Clivillé, and María de la Fuente for their assistance with English. We also thank Pilar Zaldívar, Hans Pretzsch (Editor-in-Chief) and two anonymous reviewers for their valuable comments to improve the manuscript. This research was funded by a predoctoral grant to DLM (BES-2015-072852) and the Project FORMIXING (AGL2014-51964-C2-1-R) from the Ministry of Economy and Competitiveness of the Spanish Government.

Author information

Authors and Affiliations

Authors

Contributions

DLM carried out the field and laboratory work, ran the data analysis and discussed the results. DLM and CMR discussed data analysis and commented on the results and discussion. CMR supported DLM with the statistical analysis. MBT supported DLM with the laboratory analysis. DLM, CMR, MBT and FB edited the manuscript. FB coordinated the research project.

Corresponding author

Correspondence to Daphne López-Marcos.

Additional information

Communicated by Rüdiger Grote.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Species classification according to the Raunkiaer’s life-forms (Raunkiaer 1934), following Aizpiru et al. (2007), their protection status in Spain according to Anthos project [(http://www.anthos.es/): CR critically endangered, EN endangered, VU vulnerable (UICN, 2012) and SI special interest] and Raunkiaer’s life-forms cover (%) of each stand type.

Life-forms

Species

Protection status

Raunkiaer’s life-forms cover (%)

Status

Law

Red book

Region

PS

MM (mean ± SE)

PP

Therophytes

Aira caryophyllea L.

    

1.37 ± 1.02

1.37 ± 0.81

0.17 ± 0.11

Geranium robertianum L.

    

Melampyrum pratense L.

    

Geophytes

Pteridium aquilinum (L.) Kuhn

VU

7

b

Murcia

5.75 ± 2.37

2.08 ± 1.04

0.08 ± 0.08

Asphodelus albus Mill.

    

Simethis mattiazzii (Vand.) Sacc.

EN

14

e

Cataluña

Hemicryptophytes

Viola montcaunica Pau

SI

5

 

Castilla la Mancha

8.87 ± 2.66

7.32 ± 2.69

4.92 ± 3.24

Polygala vulgaris L.

VU

 

a

Baleares

Potentilla montana Brot.

    

Agrostis castellana Boiss. & Reut.

    

Galium saxatile L.

    

Juncus conglomeratus L.

    

Hypochaeris radicata L.

    

Lotus corniculatus L.

SI

6

 

Extremadura

Sanguisorba minor Scop.

    

Deschampsia flexuosa (L.) Trin.

    

Chamaephytes

Erica australis L.

    

21.13 ± 8.21

26.08 ± 9.21

29.00 ± 7.32

Erica arborea L.

EN

 

b

Murcia

Arenaria montana L.

    

Calluna vulgaris (L.) Hull

    

Arctostaphylos uva-ursi (L.) Spreng.

SI

7

b

Murcia

Vaccinium myrtillus L.

    

Phanerophytes

Quercus pyrenaica Willd.

CR

5, 8, 10, 11

d

Spain

11.53 ± 3.10

5.83 ± 2.5

7.50 ± 2.22

Ilex aquifolium L.

VU

1, 2, 3, 5, 6, 9, 11, 13

d

Spain

Pinus sylvestris L.

    

Pinus pinaster Aiton

SI

5, 10

a, b

Baleares, Castilla la Mancha, Murcia

Quercus faginea Lam.

EN

4, 7, 13

b, c, d

Spain

Cistus laurifolius L.

    

Juniperus oxycedrus L.

EN

7

a

Murcia

  1. 1Orden de 5 de noviembre de 1984 sobre protección de plantas de la flora autóctona amenazada de Cataluña. D.O.G.C. núm. 493, 12 de diciembre de 1984, págs. 3505–3506
  2. 2Orden de 10 de diciembre de 1984, sobre protección del acebo (Ilex aquifolium L.) en el territorio de la Comunidad Autónoma de Galicia. D.O.G. núm. 240, 15 de diciembre de 1984, págs. 4240–4241
  3. 3Decreto 18/1992, de 26 de marzo por el que se aprueba el Catálogo Regional de Especies Amenazadas de Fauna y Flora Silvestres y se crea la categoría de árboles singulares. B.O.C.M. núm. 85, 9 de abril de 1992, págs. 5–11
  4. 4Decreto 65/1995, de 27 de abril por el que se crea el Catálogo Regional de Especies Amenazadas de la Flora del Principado de Asturias y se dictan normas para su protección. B.O.P.A. núm. 128, 28 de junio de 1995, págs. 6118–6120
  5. 5Decreto 33/1998, de 5 de mayo de 1998 por el que se crea el Catálogo Regional de Especies Amenazadas de Castilla-La Mancha. D.O.C.M. núm. 22, 15 de mayo de 1998, págs. 3391–3398
  6. 6Decreto 37/2001, de 6 de marzo por el que se regula el Catálogo Regional de Especies Amenazadas de Extremadura. D.O.E. núm. 30, 13 de marzo de 2001, págs. 2349–2364
  7. 7Decreto 50/2003, de 30 de mayo por el que se crea el Catálogo Regional de Flora Silvestre Protegida de la Región de Murcia y se dictan normas para el aprovechamiento de diversas especies forestales. B.O.R.M. núm. 131, 10 de junio de 2003, págs. 11615–11624
  8. 8Ley 8/2003, de 28 de octubre de la flora y la fauna silvestres. B.O.J.A. núm. 218, 12 de noviembre de 2003, págs. 23790–23810
  9. 9Decreto 181/2005, de 6 de septiembre del Gobierno de Aragón, por el que se modifica parcialmente el Decreto 49/1995, de 28 de marzo, de la Diputación General de Aragón, por el que se regula el Catálogo de Especies Amenazadas de Aragón. B.O.A. núm. 114, 23 de septiembre de 2005, págs. 11527–11532
  10. 10Decreto 63/2007, de 14 de junio por el que se crean el Catálogo de Flora Protegida de Castilla y León y la figura de protección denominada Microrreserva de Flora. B.O.C.yL. núm. 119, 20 de junio de 2007, págs. 13197–13204
  11. 11Decreto 70/2009, de 22 de mayo del Consell, por el que se crea y regula el Catálogo Valenciano de Especies de Flora Amenazadas y se regulan medidas adicionales de conservación. D.O.C.V. núm. 6021, 26 de mayo de 2009, págs. 20143–20162
  12. 11Decreto 70/2009, de 22 de mayo del Consell, por el que se crea y regula el Catálogo Valenciano de Especies de Flora Amenazadas y se regulan medidas adicionales de conservación. D.O.C.V. núm. 6021, 26 de mayo de 2009, págs. 20143–20162
  13. 12Orden de 10 de enero de 2011, de la Consejera de Medio Ambiente, Planificación Territorial, Agricultura y Pesca, por la que se modifica el Catálogo Vasco de Especies Amenazadas de la Fauna y Flora Silvestre y Marina, y se aprueba el texto único. B.O.P.V. núm. 37, 23 de febrero de 2011, págs. 1–12
  14. 13Decreto 23/2012, de 14 de febrero por el que se regula la conservación y el uso sostenible de la flora y la fauna silvestres y sus hábitats. B.O.J.A. núm. 60, 27 de marzo de 2012, págs. 114–163
  15. 14Resolución AAM/732/2015, de 9 de abril, por la que se aprueba la catalogación, descatalogación y cambio de categoría de especies y subespecies del Catálogo de flora amenazada de Cataluña. D.O.G.C. núm. 6854, 20 de abril de 2015, págs. 1–21
  16. aSáez, Ll. & Rosselló, J.A. 2001. Llibre vermell de la flora vascular de les Isles Balears. Consejería de Medio Ambiente, Gobierno de las Islas Baleares, Palma de Mallorca, 232 p
  17. bSánchez Gómez, P., Carrión Vilches, M.A., Hernández González, A. & Guerra Montes, J. 2002. Libro rojo de la flora silvestre protegida de la Región de Murcia. Consejería de Agricultura, Agua y Medio Ambiente, D.G. del Medio Natural, Murcia, 685 p
  18. cCabezudo, B., Talavera, S., Blanca, G., Salazar, C. Cueto, M.J., Valdés, B., Hernández Bermejo, J.E., Herrera, C., Rodríguez Hiraldo, C. & Navas, D. 2005. Lista roja de la flora vascular de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, 126 p
  19. dBañares, A., Blanca, G., Güemes, J., Moreno, J.C. & Ortiz, S., eds. 2008. Lista roja 2008 de la flora vascular española. Dir. Gen. de Medio Natural y Política Forestal (Min. de Medio Ambiente, y Medio Rural y Marino)—SEBICOP, Madrid
  20. eSáez, Ll., Aymerich, P. & Blanché, C. 2010. Llibre vermell de les plantes vasculars endèmiques i amenaçades de Catalunya. Argania Ed., Barcelona, 811 p

Appendix 2

Data analyses of soil properties.

Water holding capacity

Water holding capacity of each horizon (WHCHi)

WHCHi = AWHi·bDHi·%EFHi THi

AWHi: available water of each horizon

bDHi: bulk density of each horizon

%EFHi: % of earth fraction of each horizon

THi: thickness of each horizon

Water holding capacity in the whole mineral soil profile (0–50 cm; WHC)

WHC = ∑ WHCHi

 

Easily oxidizable carbon stock

Easily oxidizable carbon stock of each horizon (oxCstockHi)

oxCstockHi = oxCHi·bDHi·%EFHi THi

oxCHi: easily oxidizable carbon of each horizon

bDHi: bulk density of each horizon

%EFHi: % of earth fraction of each horizon

THi: thickness of each horizon

Easily oxidizable carbon stock in the whole mineral soil profile (0–50 cm; oxCstock)

oxCstock = ∑ oxCstockHi

 

Total organic carbon stock

Total organic carbon stock of each horizon (CstockHi)

CstockHi = TOCHi·bDHi·%EFHi THi

TOCHi: total organic carbon of each horizon

bDHi: bulk density of each horizon

%EFHi: % of earth fraction of each horizon

THi: thickness of each horizon

Total organic carbon stock in the whole mineral soil profile (0–50 cm; Cstock)

Cstock = ∑ CstockHi

 

Total nitrogen stock

Total nitrogen stock of each horizon (NstockHi)

NstockHi = TNHi·bDHi·%EFHi THi

TNHi: total nitrogen of each horizon

bDHi: bulk density of each horizon

%EFHi: % of earth fraction of each horizon

THi: thickness of each horizon

Total nitrogen stock in the whole mineral soil profile (0–50 cm; Nstock)

Nstock = ∑ NstockHi

 

Available phosphorus stock

Available phosphorus stock of each horizon (PavstockHi)

PavstockHi = TNHi·bDHi·%EFHi THi

PavHi: total nitrogen of each horizon

bDHi: bulk density of each horizon

%EFHi: % of earth fraction of each horizon

THi: thickness of each horizon

Available phosphorus stock in the whole mineral soil profile (0–50 cm; Pavstock)

Pavstock = ∑ PavstockHi

 

Exchangeable sodium stock

Exchangeable sodium stock of each horizon (Na+stockHi)

Na+stockHi = TNHi·bDHi·%EFHi THi

Na +Hi : exchangeable sodium of each horizon

bDHi: bulk density of each horizon

%EFHi: % of earth fraction of each horizon

THi: thickness of each horizon

Exchangeable sodium stock in the whole mineral soil profile (0–50 cm; Na+stock)

Na+stock = ∑ Na+stockHi

 

Exchangeable potassium stock

Exchangeable potassium stock of each horizon (K+stockHi)

K+stockHi = TNHi·bDHi·%EFHi THi

K +Hi : exchangeable potassium of each horizon

bDHi: bulk density of each horizon

%EFHi: % of earth fraction of each horizon

THi: thickness of each horizon

Exchangeable potassium stock in the whole mineral soil profile (0–50 cm; K+stock)

K+stock = ∑ K+stockHi

 

Exchangeable calcium stock

Exchangeable calcium stock of each horizon (Ca2+stockHi)

Ca2+stockHi = TNHi·bDHi·%EFHi THi

Ca +2Hi : exchangeable calcium of each horizon

bDHi: bulk density of each horizon

%EFHi: % of earth fraction of each horizon

THi: thickness of each horizon

Exchangeable calcium stock in the whole mineral soil profile (0–50 cm; Ca2+stock)

Ca2+stock = ∑ Ca+2stockHi

 

Exchangeable magnesium stock

Exchangeable magnesium stock of each horizon (Mg2+stockHi)

Mg2+stockHi = TNHi·bDHi·%EFHi THi

Mg 2+Hi : exchangeable magnesium of each horizon

bDHi: bulk density of each horizon

%EFHi: % of earth fraction of each horizon

THi: thickness of each horizon

Exchangeable magnesium stock in the whole mineral soil profile (0–50 cm; Mg2+stock)

Mg2+stock = ∑ Mg2+stockHi

 

Appendix 3

Soil properties (mean ± SE), in each stand type, fitted as vectors onto the RDA ordination (Fig. 3). PS Pinus sylvestris monospecific plots, PP Pinus pinaster monospecific plots, MM mixed plots of both Pinus species.

 

PS

MM

PP

R 2

p value

WHC (gwater cm−2)

8.65 ± 0.93

6.61 ± 1.54

5.36 ± 1.57

0.39

0.03

oxCstock (Mg ha−1)

85.42 ± 12.48

94.40 ± 21.18

71.83 ± 13.40

0.08

0.53

Cstock (Mg ha−1)

88.07 ± 11.42

97.84 ± 13.53

75.35 ± 10.33

0.32

0.07

Nstock (Mg ha−1)

3.83 ± 0.56

3.59 ± 0.48

3.97 ± 1.60

0.03

0.81

Pavstock (Mg ha−1)

18.98 ± 1.66

17.07 ± 2.52

15.03 ± 2.14

0.24

0.14

Na+stock (Mg ha−1)

0.91 ± 0.07

0.93 ± 0.08

0.82 ± 0.11

0.16

0.29

K+stock (Mg ha−1)

0.33 ± 0.08

0.28 ± 0.05

0.21 ± 0.03

0.30

0.10

Ca+2stock (Mg ha−1)

1.98 ± 0.13

2.00 ± 0.38

1.67 ± 0.33

0.27

0.12

Mg+2stock (Mg ha−1)

0.33 ± 0.04

0.35 ± 0.08

0.30 ± 0.06

0.31

0.08

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Marcos, D., Turrión, MB., Bravo, F. et al. Understory response to overstory and soil gradients in mixed versus monospecific Mediterranean pine forests. Eur J Forest Res 138, 939–955 (2019). https://doi.org/10.1007/s10342-019-01215-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-019-01215-0

Keywords

Navigation