European Journal of Forest Research

, Volume 137, Issue 5, pp 573–591 | Cite as

Effects of using certain tree species in forest regeneration on volume growth, timber yield, and carbon stock of boreal forests in Finland under different CMIP5 projections

  • L. ALRahahleh
  • A. Kilpeläinen
  • V.-P. Ikonen
  • H. Strandman
  • A. Asikainen
  • A. Venäläinen
  • J. Kaurola
  • J. Kangas
  • H. PeltolaEmail author
Original Paper


We studied how the use of certain tree species in forest regeneration affected the volume growth, timber yield, and carbon stock of boreal forests in Finland under the current climate (1981–2010) and recent-generation global climate model (GCM) predictions (i.e., multi-model means and individual GCMs of CMIP5), using the representative concentration pathways RCP4.5 and RCP8.5 over the period 2010–2099. Forest ecosystem model simulations were conducted on upland national forest inventory plots throughout Finland. In a baseline management regime, forest regeneration was performed by planting the same tree species that was dominant before the final cut. In alternative management regimes, either Scots pine, Norway spruce, or silver birch were planted on medium-fertility sites. Other management actions over rotation were done as in a baseline management. Compared to baseline management, an increased planting of birch resulted in relative sense highest increase in the volume growth, timber yield, and carbon stock in forests in the south, especially under severe climate projections (e.g., multi-model mean RCP8.5, and GCMs such as HadGEM2-ES RCP8.5 and GFDL-CM3 RCP8.5). This situation was opposite for Norway spruce. In the north, the volume growth, timber yield, and carbon stock of forests increased the most under severe climate projections (e.g., multi-model mean RCP8.5 and CNRM-CM5 RCP8.5), regardless of tree species preference. The magnitude of the climate change impacts depended largely on the geographical region and the severity of the climate projection. Increasing the cultivation of birch and Scots pine, as opposed to Norway spruce, could be recommended for the south. In the north, all three species could be cultivated, regardless of the severity of climate change.


Carbon stock Gap-type forest ecosystem model Forest management RCP4.5 RCP8.5 Timber yield Tree species preference Volume growth 



This work was supported by the FORBIO project (decision numbers 293380 and 314224), funded by the Strategic Research Council of the Academy of Finland, and the ADAPT project (decision number 260279), funded by the Academy of Finland, both led by HP at the University of Eastern Finland. The Natural Resources Institute Finland is acknowledged for providing the National Forest Inventory data, and the Finnish Meteorological Institute (Kimmo Ruosteenoja and Matti Kämäräinen) is acknowledged for providing climate data for the study.


  1. Aalto J, Pirinen P, Heikkinen J, Venäläinen A (2013) Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theor Appl Climatol 112(1–2):99–111. CrossRefGoogle Scholar
  2. Aalto J, Pirinen P, Jylhä K (2016) New gridded daily climatology of Finland: permutation-based uncertainty estimates and temporal trends in climate. J Geophys Res Atmos 121:3807–3823. CrossRefGoogle Scholar
  3. Ahlström A, Schurgers G, Arneth A, Smith B (2012) Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ Res Lett 7:044008. CrossRefGoogle Scholar
  4. Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väisänen P (eds) (2014) Recommendations for good forest management. (In Finnish: Hyvän metsänhoidon suositukset – metsänhoito.) Publications of the Forestry Development Centre, Tapio, Metsäkustannus Oy, Helsinki, Finland (In Finnish) Google Scholar
  5. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. CrossRefGoogle Scholar
  6. ALRahahleh L, Ikonen V-P, Kilpeläinen A, Torssonen P, Strandman H, Asikainen A, Kaurola J, Venäläinen A, Peltola H (2017) Effects of forest conservation and management on volume growth, harvested amount of timber, carbon stock and amount of deadwood in Finnish boreal forests under changing climate. Can J For Res 47:215–225. CrossRefGoogle Scholar
  7. ALRahahleh L, Kilpeläinen A, Ikonen V-P, Strandman H, Venäläinen A, Peltola H (2018) Effects of CMIP5 projections on volume growth, carbon stock and timber yield in managed Scots pine, Norway spruce and silver birch stands under Southern and Northern Boreal conditions. Forests 9:208. CrossRefGoogle Scholar
  8. Bottalico F, Pesola L, Vizzarri M, Antonello L, Barbati A, Chirici G, Corona P, Cullotta S, Garfì V, Giannico V et al (2016) Modeling the influence of alternative forest management scenarios on wood production and carbon storage: a case study in the Mediterranean region. Environ Res 144:72–87. CrossRefPubMedGoogle Scholar
  9. Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Kellomäki S (2006a) Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes. Environ Sci Policy 9:237–252. CrossRefGoogle Scholar
  10. Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Matala J, Kellomäki S (2006b) Sensitivity of growth of Scots pine, Norway spruce, and silver birch to climate change and forest management in boreal conditions. For Ecol Manag 232:152–167. CrossRefGoogle Scholar
  11. COM/2014/0015 (2014) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee of the Regions. A policy framework for climate and energy in the period from 2020 to 2030/*COM/2014/015 final/. Accessed 6 May 2018
  12. Ekström M, Grose M, Heady C, Turner S, Teng J (2016) The method of producing climate change datasets impacts the resulting policy guidance and chance of mal-adaptation. Clim Serv 4:13–29. CrossRefGoogle Scholar
  13. Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, Delucia E, Oren R (2012) Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Glob Change Biol 18:223–242. CrossRefGoogle Scholar
  14. Finnish Forest Research Institute (2014) Statistical yearbook of forestry 2014. Finnish Forest Research Institute, Helsinki, Finland. Vammalan Kirjapaino Oy, Sastamala, FinlandGoogle Scholar
  15. Garcia-Gonzalo J, Peltola H, Briceño-Elizondo E, Kellomäki S (2007a) Changed thinning regimes may increase carbon stock under climate change: a case study from a Finnish boreal forest. Clim Change 81:431–454. CrossRefGoogle Scholar
  16. Garcia-Gonzalo J, Peltola H, Briceño-Elizondo E, Kellomäki S (2007b) Effects of climate change and management on timber yield in boreal forests, with economic implications: a case study. Ecol Model 209:220–234. CrossRefGoogle Scholar
  17. Granda E, Camarero JJ, Gimeno TE, Martínez-Fernández J, Valladares F (2013) Intensity and timing of warming and drought differentially affect growth patterns of co-occurring Mediterranean tree species. Eur J Forest Res 132(3):469–480. CrossRefGoogle Scholar
  18. Henttonen HM, Mäkinen H, Heiskanen J, Peltoniemi M, Lauren A, Hordo M (2015) Response of radial increment variation of Scots pine to temperature, precipitation and soil water content along a latitudinal gradient across Finland and Estonia. Agric For Meteorol 198–199:294–308. CrossRefGoogle Scholar
  19. Honkaniemi J, Lehtonen M, Väisänen H, Peltola H (2017) Effects of wood decay by Heterobasidion annosum on the vulnerability of Norway spruce stands to wind damage: a mechanistic modelling approach. Can J For Res 47(6):777–787. CrossRefGoogle Scholar
  20. Hynynen J, Ojansuu R, Hökka H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA System. Finnish Forest Research Institute Research Paper 835Google Scholar
  21. Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480. CrossRefPubMedGoogle Scholar
  22. Järvinen O, Vänni T (1994) Ministry of Water and Environment Mimeograph 579 (In Finnish) Google Scholar
  23. Jyske T, Hölttä T, Mäkinen H, Nöjd P, Lumme I, Spiecker H (2010) The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol 30:103–115. CrossRefPubMedGoogle Scholar
  24. Kärkkäinen L, Matala J, Härkänen K, Kellomäki S, Nuutinen T (2008) Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy 32(10):934–943. CrossRefGoogle Scholar
  25. Kellomäki S, Väisänen H, Kolström T (1997) Model computations on the effects of elevating temperature and atmospheric CO2 on the regeneration of scots pine at the timber line in Finland. Clim Change 37:683–708. CrossRefGoogle Scholar
  26. Kellomäki S, Rouvinen I, Peltola H, Strandman H, Steinbrecher R (2001) Impact of global warming on the tree species composition of boreal forests in Finland and effects on emissions of isoprenoids. Glob Change Biol 7:531–544CrossRefGoogle Scholar
  27. Kellomäki S, Strandman H, Nuutinen T, Peltola H, Korhonen KT, Väisänen H (2005) Adaptation of forest ecosystems, forests and forestry to climate change. FINADAPT Working Paper 4. Finnish Environmental Institute Mimeograph 334Google Scholar
  28. Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc B 363:2341–2351. CrossRefGoogle Scholar
  29. Kellomäki S, Strandman H, Heinonen T, Asikainen A, Venäläinen A, Peltola H (2018) Temporal and spatial change in diameter growth of boreal Scots pine, Norway spruce and birch under recent-generation (CMIP5) global climate model projections for the 21st century. Forests 9(3):118. CrossRefGoogle Scholar
  30. Kellomäki S, Väisänen H (1995) Model computations on the impact of changing climate on natural regeneration of Scots pine in Finland. Canadian J Forest Res 25(6):929-942. CrossRefGoogle Scholar
  31. Kienast F (1987) FORECE: a forest succession model for southern central Europe. Oak Ridge National Laboratory, Oak Ridge, Tennessee, Environmental Science Division Publication No. 2989Google Scholar
  32. Kindermann GE, Schörghuber S, Linkosalo MJ (2013) Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios. Carbon Balance Manage 8:2. CrossRefGoogle Scholar
  33. Kolström M, Lindner M, Vilén T, Maroschek M, Seidl R, Lexer MJ et al (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2(4):961–982. CrossRefGoogle Scholar
  34. Korhonen KT (2016) National forest inventories: assessment of wood availability and use: Finland. In: Vidal C, Alberdi I, Hernandez L, Redmond JJ (eds) National forest inventories: assessment of wood availability and use. Springer, Berlin, pp 369–384CrossRefGoogle Scholar
  35. Lehtonen I, Kämäräinen M, Gregow H, Venäläinen A, Peltola H (2016a) Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change. Nat Hazards Earth Syst Sci 16:2259–2271. CrossRefGoogle Scholar
  36. Lehtonen I, Venäläinen A, Kämäräinen M, Peltola H, Gregow H (2016b) Risk of large-scale fires in boreal forests of Finland under changing climate. Nat Hazards Earth Syst Sci 16:239–253. CrossRefGoogle Scholar
  37. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. CrossRefGoogle Scholar
  38. Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M et al (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83. CrossRefGoogle Scholar
  39. Madsen MS, Langen PL, Boberg F, Christense JH (2017) Inflated uncertainty in multimodel-based regional climate projections. Geophys Res Lett 44:11606–11613. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mäkinen H, Nöjd P, Mielikäinen K (2000) Climatic signal in annual growth variation of Norway spruce (Picea abies) along a transect from central Finland to the Arctic timberline. Can J For Res 30(5):769–777. CrossRefGoogle Scholar
  41. Mäkinen H, Nöjd P, Mielikäinen K (2001) Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees 15:177–185. CrossRefGoogle Scholar
  42. Mäkinen H, Nöjd P, Kahle H-P, Neuman U, Tveite B, Mielikäinen K, Röhle H, Speiker H (2002) Radial growth of Norway spruce (Picea abies L. Karst) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manag 17:243–259. CrossRefGoogle Scholar
  43. Matala J, Kärkkäinen L, Härkönen K, Kellomäki S, Nuutinen T (2009) Carbon sequestration in the growing stock of trees in Finland under different cutting and climate scenarios. Eur J For Res 128(5):493–504. CrossRefGoogle Scholar
  44. Mielikäinen K (1980) Mänty-koivusekametsiköiden rakenne ja kehitys (Structure and development of mixed pine and birch stands). Commun Inst For Fenn 99(3):1–82 (In Finnish) Google Scholar
  45. Mielikäinen K (1985) Koivusekoituksen vaikutus kuusikon rakenteeseen ja kehitykseen (Effect of an admixture of birch on the structure and development of Norway spruce stand). Commun Inst For Fenn 133:1–79 (In Finnish) Google Scholar
  46. Nikolov N, Helmisaari H (1992) Sivics of the circumpolar boreal forest tree species. In: Shugart HH, Leemans R, Bonan GB (eds) A system analysis of the global boreal forests. Cambridge University Press, Cambridge, pp 9–12Google Scholar
  47. Peltola H, Kellomäki S, Väisänen H, Ikonen V-P (1999) A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce and birch. Can J For Res 29:647–661. CrossRefGoogle Scholar
  48. Peltola H, Kilpeläinen A, Kellomäki S (2002) Diameter growth of Scots pine (Pinus sylvestris) trees at elevated temperature and carbon dioxide under boreal conditions. Tree Physiol 22(14):963–972CrossRefPubMedGoogle Scholar
  49. Peltola H, Ikonen V-P, Gregow H, Strandman H, Kilpeläinen A, Venäläinen A, Kellomäki S (2010) Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. Forest Ecol Manag 260(5):833–845. CrossRefGoogle Scholar
  50. Poudel BC, Sathre R, Gustavsson L, Bergh J, Lundström A, Hyvönen R (2011) Effects of climate change on biomass production and substitution in north-central Sweden. Biomass Bioenerg 35(10):4340–4355. CrossRefGoogle Scholar
  51. Poudel BC, Sathre R, Bergh J, Gustavsson L, Lundström A, Hyvönen R (2012) Potential effects of intensive forestry on biomass production and total carbon balance in north-central Sweden. Environ Sci Policy 15:106–124. CrossRefGoogle Scholar
  52. Pretzsch H, Schütze G (2016) Effect of tree species mixing on the size structure, density, and yield of forest stands. Euro J For Res 135(1):1–22. CrossRefGoogle Scholar
  53. Räisänen J, Räty O (2013) Projections of daily mean temperature variability in the future: cross-validation tests with ENSEMBLES regional climate models. Clim Dyn 41:1553–1568. CrossRefGoogle Scholar
  54. Räty O, Räisänen J, Ylhäisi JS (2014) Evaluation of delta change and bias correction methods for future daily precipitation: intermodal cross-validation using ENSEMBLES simulations. Clim Dyn 42:2287–2303. CrossRefGoogle Scholar
  55. Reyer C, Bathgate S, Blennow K, Borges JG, Bugmann H, Delzon S, Faias SP, Garcia-Gonzalo J, Gardiner B, Gonzalez-Olabarria JR, Gracia C, Hernández JG, Kellomäki S, Kramer K, Lexer MJ, Lindner M, van der Maaten E, Maroschek M, Muys B, Nicoll B, Palahi M, Palma JHN, Paulo JA, Peltola H, Pukkala T, Rammer W, Ray D, Sabaté S, Schelhaas MJ, Seidl R, Temperli C, Tomé M, Yousefpour R, Zimmermann NE, Hanewinkel M (2017) Are forest disturbances amplifying or cancelling out climate change-induced productivity changes in European forests? Env Res Lett 12(3):034027. CrossRefGoogle Scholar
  56. Routa J, Kellomäki S, Kilpeläinen A, Peltola H, Strandman H (2011) Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. GCB Bioenergy 3:483–497. CrossRefGoogle Scholar
  57. Ruosteenoja K, Jylhä K, Kämäräinen M (2016) Climate projections for Finland under the RCP forcing scenarios. Geophysica 51(1–2):17–50Google Scholar
  58. Ruosteenoja K, Markkanen T, Venäläinen A, Räisänen P, Peltola H (2018) Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Clim Dyn 50(3–4):1177–1192. CrossRefGoogle Scholar
  59. Saxe H, Cannell MG, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149(3):369–399. CrossRefGoogle Scholar
  60. Schäfer C, Grams TEE, Rötzer T, Feldermann A, Pretzsch H (2017) Drought stress reaction of growth and Δ13C in tree rings of European beech and Norway spruce in monospecific versus mixed stands along a precipitation gradient. Forests 7–8:177. CrossRefGoogle Scholar
  61. Seidl R, Lexer MJ (2013) Forest management under climatic and social uncertainty: trade-offs between reducing climate change impacts and fostering adaptive capacity. J Environ Manag 114:461–469. CrossRefGoogle Scholar
  62. Seidl R, Rammer W, Jäger D, Currie WS, Lexer MJ (2007) Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For Ecol Manag 248:64–79. CrossRefGoogle Scholar
  63. Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Change 7(6):395–402. CrossRefGoogle Scholar
  64. Subramanian N, Bergh J, Johansson U, Nilsson U, Sallnäs O (2016) Adaptation of forest management regimes in southern Sweden to increased risks associated with climate change. Forests 7(1):1–18. CrossRefGoogle Scholar
  65. Taeger S, Fusi B, Konnert M, Menzel A (2013) Large-scale genetic structure and drought-induced effects on European Scots pine (Pinus sylvestris L.) seedlings. Eur J Forest Res 132(3):481–496. CrossRefGoogle Scholar
  66. The Ministry of Employment and the Economy (2014) The Finnish bioeconomy strategy. Accessed 6 May 2018
  67. Thom D, Seidl R (2016) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev 91:760–781. CrossRefPubMedGoogle Scholar
  68. Torssonen P, Strandman H, Kellomäki S, Kilpeläinen A, Jylhä K, Asikainen A, Peltola H (2015) Do we need to adapt the choice of main boreal tree species in forest regeneration under the projected climate change? Forestry 88(5):564–572. CrossRefGoogle Scholar
  69. Triviño M, Juutinen A, Mazziotta A, Miettinen K, Podkopaev D, Reunanen P, Mönkkönen M (2015) Managing a boreal forest landscape for providing timber, storing and sequestering carbon. Ecosyst Serv 14:179–189. CrossRefGoogle Scholar
  70. Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A Basic Finnish climate data set 1961-2000—description and illustrations. Reports of the Finnish Meteorological Institute 5Google Scholar
  71. Wilcke RAI, Bärring L (2016) Selecting regional climate scenarios for impact modelling studies. Environ Model Softw 78:191–201. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Forest Sciences, Faculty of Science and ForestryUniversity of Eastern FinlandJoensuuFinland
  2. 2.Natural Resources Institute FinlandJoensuuFinland
  3. 3.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations