Skip to main content

Advertisement

Log in

Diversity loss of lichen pine forests in Poland

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In Central Europe, deciduous forests are the dominant community type and lichen pine forests are restricted to certain areas with extremely nutrient-poor and xeric soil types. In recent decades, a retreat of vegetation of oligotrophic habitats has been observed in Central Europe. In this study, we assessed changes of lichen pine forests in Poland: within the main area of the range in Central Europe. We used two sets of data collected at a local and regional (nation-wide) scale. On the basis of data from semi-permanent plots, we examined changes in the structure and species composition of lichen pine forests over 33 years at the local scale (between 1975 and 2008). To compare trends at the regional scale, we used data collected in the Polish Vegetation Database (PVD). For identification of lichen pine forests we determined a group of co-occurring Cladonia species. We analyzed differences in species richness and vegetation structure at the regional scale in tree time periods (1) between 1951 and 1969, (2) 1970 and 1989, and (3) 1990 and 2011. We found that changes in lichen pine forests are primarily quantitative at both scales. Our results indicate that the abundance of Cladonia species is limited by strong competitors, i.e., vascular plants and bryophytes, which may be explained by eutrophication and climate warming. Only pine forests with a minor abundance of lichens have chances to persist in the vegetation of Central Europe, while the most valuable communities with high abundance of indicators will disappear. Though an assessment of the total decrease in the area of lichen pine forests is not possible with the available regional data, local observations indicate a large decline in the area of lichen pine forests in Central Europe. Their conservation seems to be a serious challenge, because it is difficult to provide optimal conditions for all indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggenbach CJ, Kooijman AM, Fujita Y, van der Hagen H, van Til M, Cooper D, Jones L (2017) Does atmospheric nitrogen deposition lead to greater nitrogen and carbon accumulation in coastal sand dunes? Biol Conserv 212:416–422. https://doi.org/10.1016/j.biocon.2016.12.007

    Article  Google Scholar 

  • Ahti T, Oksanen J (1990) Epigeic lichen communities of taiga and tundra regions. Vegetatio 86(1):39–70. https://doi.org/10.1007/BF00045134

    Article  Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57(3):287–301. https://doi.org/10.1051/forest:2000119

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449. https://doi.org/10.1126/science.1155121

    Article  PubMed  CAS  Google Scholar 

  • Botting RS, Fredeen AL (2006) Contrasting terrestrial lichen, liverwort, and moss diversity between old-growth and young second-growth forest on two soil textures in central British Columbia. Botany 84(1):120–132. https://doi.org/10.1139/b05-146

    Article  Google Scholar 

  • Boudreault C, Zouaoui S, Drapeau P, Bergeron Y, Stevenson S (2013) Canopy openings created by partial cutting increase growth rates and maintain the cover of three Cladonia species in the Canadian boreal forest. For Ecol Manage 304:473–481. https://doi.org/10.1016/j.foreco.2013.05.043

    Article  Google Scholar 

  • Chytrý M (ed) (2013) Vegetation of the Czech Republic 4. Forest and scrub vegetation. Academia, Praha

    Google Scholar 

  • Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13(1):79–90. https://doi.org/10.1111/j.1654-1103.2002.tb02025.x

    Article  Google Scholar 

  • Chytrý M, Pyšek P, Tichý L, Knollová I, Danihelka J (2005) Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77(4):339–354

    Google Scholar 

  • Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoenix GK, Gwynn Jones D, Jonasson S, Chapin FS III, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjörnsson B, Aerts R (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89(6):984–994. https://doi.org/10.1111/j.1365-2745.2001.00625.x

    Article  Google Scholar 

  • Coxson DS, Marsh J (2001) Lichen chronosequences (postfire and postharvest) in lodgepole pine (Pinus contorta) forests of northern interior British Columbia. Can J Bot 79(12):1449–1464. https://doi.org/10.1139/b01-127

    Article  Google Scholar 

  • Dingová Košuthová A, Svitkova I, Pišút I, Senko D, Valachovič M (2013) The impact of forest management on changes in composition of terricolous lichens in dry acidophilos Scots pine forests. Lichenologist 45(03):413–425. https://doi.org/10.1017/S002428291300011X

    Article  Google Scholar 

  • Dirnböck T, Grandin U, Bernhardt-Römermann M, Beudert B, Canullo R, Forsius M, Grabner MT, Holmberg M, Kleemola S, Lundin L, Mirtl M, Neumann M, Pompei E, Salemaa M, Starlinger F, Staszewski T, Uziębło AK (2014) Forest floor vegetation response to nitrogen deposition in Europe. Glob Chang Biol 20(2):429–440. https://doi.org/10.1111/gcb.12440

    Article  PubMed  Google Scholar 

  • Dise NB, Ashmore M, Belyazid S, Bleeker A, Bobbink R, de Vries W, Erisman JW, Spranger T, Stevens CJ, van den Berg L (2011) Nitrogen as a threat to European terrestrial biodiversity. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) The European Nitrogen Assessment. Cambridge University Press, Cambridge, pp 463–494

    Chapter  Google Scholar 

  • Dzwonko Z, Gawroński S (2002) Effect of litter removal on species richness and acidification of a mixed oak-pine woodland. Biol Conserv 106(3):389–398. https://doi.org/10.1016/S0006-3207(01)00266-X

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. UTB, Stuttgart

    Google Scholar 

  • Erisman JW, Dammers E, Van Damme M, Soudzilovskaia N, Schaap M (2015) Trends in EU nitrogen depositions and impact on ecosystems. Air and Waste Management Association, EM, pp 31–35

    Google Scholar 

  • Ermakov N, Morozova O (2011) Syntaxonomical survey of boreal oligotrophic pine forests in northern Europe and Western Siberia. Appl Veg Sci 14(4):524–536. https://doi.org/10.1111/j.1654-109X.2011.01155.x

    Article  Google Scholar 

  • Euro + Med (2006) Euro + Med PlantBase - the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/. Accessed 15 Jan 2018

  • European Commission (2007) The Interpretation Manual of European Union Habitats. EUR27, European Commission Dg Environment, Nature and Biodiversity

  • Faliński JB, Cieśliński S, Czyżewska K (1993) Dynamic-floristic atlas of Jelonka reserve and adjacent areas. Distribution of vascular plant species, bryophytes and lichens on the abandoned farmlands during secondary succession. Phytocoenosis 5 Supplementum Cartographiae Geobotanicae 3:3–139

    Google Scholar 

  • Fałtynowicz W (1980) Changes in the ground lichen flora with respect to the age of pine plantations in the Cladonio-Pinetum habitat. Zeszyty Naukowe Wydziału Biologii i Nauk o Ziemi UG Biologia 2:81–90 (in Polish)

    Google Scholar 

  • Fałtynowicz W (1986) The dynamics and role of lichens in a managed Cladonia-Scotch pine forest (Cladonio-Pinetum). Monogr Bot 69:1–96

    Article  Google Scholar 

  • Fischer P, Heinken T, Meyer P, Schmidt M, Waesch G (2009) Differentiation and current situation of the “Central European Lichen Pine Forests” (91T0) habitat type in Germany. Natur Landschaft 84(6):281–287 (in German)

    Google Scholar 

  • Fischer P, Bültmann H, von Drachenfels O, Heinken T, Waesch G (2014) Rückgang der Flechten-Kiefernwälder in Niedersachsen seit 1990. Informd Naturschutz Niedersachs 34:54–65 (in German)

    Google Scholar 

  • Fischer A, Michler B, Fischer HS, Brunner G, Hösch S, Schultes A, Titze P (2015) Central European lichen pine forests in Bavaria: historical development and future. Tuexenia 35:9–29. https://doi.org/10.14471/2015.35.012 (in German)

    Article  Google Scholar 

  • Galon R (1958) Z problematyki wydm śródlądowych w Polsce. In: Galon R (ed) Wydmy śródlądowe Polski. Polskie Towarzystwo Geograficzne. PWN, Warszawa, pp 13–31 (in Polish)

    Google Scholar 

  • Hauck M (2009) Global warming and alternative causes of decline in arctic-alpine and boreal-montane lichens in North-Western Central Europe. Glob Change Biol 15(11):2653–2661. https://doi.org/10.1111/j.1365-2486.2009.01968.x

    Article  Google Scholar 

  • Haughian SR, Burton PJ (2015) Microhabitat associations of lichens, feathermosses, and vascular plants in a caribou winter range, and their implications for understory development. Botany 93(4):221–231. https://doi.org/10.1139/cjb-2014-0238

    Article  CAS  Google Scholar 

  • Heinken T (1999) Dispersal patterns of terricolous lichens by thallus fragments. Lichenologist 31(6):603–612. https://doi.org/10.1006/lich.1999.0219

    Article  Google Scholar 

  • Heinken T (2007) Sand-und Silikat-Kiefernwälder (Dicrano-Pinion) in Deutschland: Gliederungskonzept und Okologie. Berichte der Reinhold-Tüxen-Gesellschaft 19:146–162 [in German]

    Google Scholar 

  • Hill MO (1979) TWINSPAN: a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Section of Ecology and Systematics, Cornell University

  • Juraszek H (1927) Pflanzensoziologische Studien über die Dünen bei Warschau. Uniwersytet Warszawski, Warszawa (in German)

    Google Scholar 

  • Kącki Z, Śliwiński M (2012) The Polish Vegetation Database: structure, resources and development. Acta Soc Bot Pol 81(2):75–79. https://doi.org/10.5586/asbp.2012.014

    Article  Google Scholar 

  • Kącki Z, Czarniecka M, Swacha G (2013) Statistical determination of diagnostic, constant and dominant species of the higher vegetation units of Poland. Monogr Bot 103:1–267. https://doi.org/10.5586/mb.2013.001

    Article  Google Scholar 

  • Kącki Z, Stefańska-Krzaczek E, Czarniecka M, Łapińska K, Łojko R, Meserszmit M, Swacha G (2016) Natura 2000 forest habitats in Poland - with a particular focus on Lower and Opole Silesia. Uniwersytet Wrocławski, Wrocław (in Polish)

    Google Scholar 

  • Keith SA, Newton AC, Morecroft MD, Bealey CE, Bullock JM (2009) Taxonomic homogenization of woodland plant communities over 70 years. Proc R Soc Lond B Biol Sci. https://doi.org/10.1098/rspb.2009.0938

    Article  Google Scholar 

  • Kelly DL, Connolly A (2000) A review of the plant communities associated with Scots pine (Pinus sylvestris) in Europe and an evaluation of putative indicator/specialist species. Investigación Agraria: Sistemas y Recursos Forestales: Fuera de Serie 1-2000:15–39

    Google Scholar 

  • Koster EA (2005) Recent advances in luminescence dating of Late Pleistocene (cold-climate) aeolian sand and loess deposits in western Europe. Permafrost Periglac 16(1):131–143. https://doi.org/10.1002/ppp.512

    Article  Google Scholar 

  • Košuthová A, Svitková I, Pišút I, Senko D, Valachovič M, Zaniewski PT, Hájek M (2015) Climatic gradients within temperate Europe and small-scale species composition of lichen-rich dry acidophilos Scots pine forests. Fungal Ecol 14:8–23. https://doi.org/10.1016/j.funeco.2014.10.005

    Article  Google Scholar 

  • Lafleur B, Zouaoui S, Fenton NJ, Drapeau P, Bergeron Y (2016) Short-term response of Cladonia lichen communities to logging and fire in boreal forests. For Ecol Manage 372:44–52. https://doi.org/10.1016/j.foreco.2016.04.007

    Article  Google Scholar 

  • Lähde E, Laiho O, Norokorpi Y (1999) Diversity-oriented silviculture in the boreal zone of Europe. For Ecol Manage 118(1–3):223–243. https://doi.org/10.1016/S0378-1127(98)00504-0

    Article  Google Scholar 

  • Landucci F, Gigante D, Venanzoni R, Chytrý M (2013) Wetland vegetation of the class Phragmito-Magno-Caricetea in central Italy. Phytocoenologia 43(1–2):67–102. https://doi.org/10.1127/0340-269X/2013/0043-0545

    Article  Google Scholar 

  • Lang SI, Cornelissen JH, Shaver GR, Ahrens M, Callaghan TV, Molau U, ter Braak CJF, Holzer A, Aerts R (2012) Arctic warming on two continents has consistent negative effects on lichen diversity and mixed effects on bryophyte diversity. Glob Chang Biol 18(3):1096–1107. https://doi.org/10.1111/j.1365-2486.2011.02570.x

    Article  Google Scholar 

  • Larsson S, Danell K (2001) Science and the management of boreal forest biodiversity. Scand J For Res 16(S3):5–9. https://doi.org/10.1080/028275801300090528

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Leuschner C, Ellenberg H (2017) Ecology of Central European forests: vegetation ecology of Central Europe, vol 1. Springer, Berlin

    Book  Google Scholar 

  • Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage 146:69–83. https://doi.org/10.1016/j.jenvman.2014.07.030

    Article  PubMed  Google Scholar 

  • Mäkipää R, Heikkinen J (2003) Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. J Veg Sci 14(4):497–508. https://doi.org/10.1111/j.1654-1103.2003.tb02176.x

    Article  Google Scholar 

  • Malzahn E (2004) Change direction of the air pollution level and climatic factors in the Białowieża Primeval Forest. Forest Res Pap 1:55–85 (in Polish)

    Google Scholar 

  • Marrs RH (1985) Techniques for reducing soil fertility for nature conservation purposes: a review in relation to research at Roper’s Heath. Suffolk Engl Biol Conserv 34(4):307–332. https://doi.org/10.1016/0006-3207(85)90038-2

    Article  Google Scholar 

  • Matuszkiewicz JM (2001) Zespoły leśne Polski. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Matuszkiewicz JM (2007) Geobotanical identification of the development tendencies in forest associations in the regions of Poland - a synthetic survey. In: Matuszkiewicz JM (ed) Geobotanical identification of the development tendencies in forest associations in the regions of Poland, 8. Polish Academy of Sciences, Stanisław Leszczyński Institute of Geography and Spatial Organization, Monographies, pp 817–848

    Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14(11):450–453. https://doi.org/10.1016/S0169-5347(99)01679-1

    Article  PubMed  CAS  Google Scholar 

  • Mielikäinen K, Hynynen J (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe—boreal zone: case Finland. J Environ Manage 67(1):47–54. https://doi.org/10.1016/S0301-4797(02)00187-1

    Article  PubMed  Google Scholar 

  • Moose Deutschland (2017) http://www.moose-deutschland.de/. Accessed 15 Jan 2018

  • Naaf T, Wulf M (2011) Traits of winner and loser species indicate drivers of herb layer changes over two decades in forests of NW Germany. J Veg Sci 22(3):516–527. https://doi.org/10.1111/j.1654-1103.2011.01267.x

    Article  Google Scholar 

  • Nordin A, Moberg R, Tønsberg T, Vitikainen O, Dalsätt Å, Myrdal M, Snitting D, Ekman S (2011) Santesson’s checklist of Fennoscandian lichen-forming and lichenicolous fungi. Version 29 April 2011. Museum of Evolution, Uppsala University. http://130.238.83.220/santesson/home.php?-link=Home. Accessed 15 Jan 2018

  • Obmiński Z (1978) Ekologia lasu. PWN, Warszawa (in Polish)

    Google Scholar 

  • Prietzel J, Kaiser KO (2005) De-eutrophication of a nitrogen-saturated Scots pine forest by prescribed litter-raking. J Plant Nutr Soil Sci 168(4):461–471. https://doi.org/10.1002/jpln.200421705

    Article  CAS  Google Scholar 

  • Purvis OW, Coppins BJ, Hawksworth DL, James PW, Moore DM (eds) (1994) The Lichen Flora of Great Britain and Ireland. Natural History Museum & British Lichen Society, London

    Google Scholar 

  • Reinecke J, Klemm G, Heinken T (2011) Veränderung der Vegetation nährstoffarmer Kiefernwälder im nördlichen Spreewald-Randgebiet zwischen 1965 und 2010. Verh Bot Ver Berlin Brandenburg 144:63–97

    Google Scholar 

  • Reinecke J, Klemm G, Heinken T (2014) Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 year. J Veg Sci 25(1):113–121. https://doi.org/10.1111/jvs.12069

    Article  Google Scholar 

  • Reinikainen A, Mäkipää R, Vanha-Majamaa I, Hotanen JP (eds) (2000) Changes in the frequency and abundance of forest and mire plants in Finland since 1950. Tammi, Helsiniki (in Finnish)

    Google Scholar 

  • Rodenkirchen H (1992) Effects of acidic precipitation, fertilization and liming on the ground vegetation in coniferous forests of southern Germany. Water Air Soil Pollut 61(3–4):279–294. https://doi.org/10.1007/BF00482611

    Article  CAS  Google Scholar 

  • Rutkowski P (2009) Natura 2000 w leśnictwie. Ministerstwo Środowiska, Warsaw (in Polish)

    Google Scholar 

  • Sandström P, Cory N, Svensson J, Hedenås H, Jougda L, Borchert N (2016) On the decline of ground lichen forests in the Swedish boreal landscape: implications for reindeer husbandry and sustainable forest management. Ambio 45(4):415–429. https://doi.org/10.1007/s13280-015-0759-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmalholz M, Hylander K (2009) Succession of bryophyte assemblages following clear-cut logging in boreal spruce-dominated forests in south-central Sweden-Does retrogressive succession occur? Can J Forest Res 39(10):1871–1880. https://doi.org/10.1139/X09-113

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman, New York

    Google Scholar 

  • Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe - temperate zone. J Environ Manage 67(1):55–65. https://doi.org/10.1016/S0301-4797(02)00188-3

    Article  PubMed  Google Scholar 

  • StatSoft Inc (2013) Electronic Statistics Textbook. http://www.statsoft.com/textbook/. Accessed 25 Jan 2018

  • Stefańska-Krzaczek E (2011) Plant communities of Scots pine stands in the south-eastern part of the Bory Dolnośląskie forest (SW Poland). Acta Bot Siles Monogr 6:3–98

    Google Scholar 

  • Stefańska-Krzaczek E (2012) Species diversity across the successional gradient of managed Scots pine stands in oligotrophic sites (SW Poland). J For Sci 58(8):345–356

    Google Scholar 

  • Stefańska-Krzaczek E, Fałtynowicz W (2013) Increase of Cladonia species diversity as a consequence of clear-cutting in nutrient-poor forest sites. Sylwan 157(12):929–936 (in Polish)

    Google Scholar 

  • Stefańska-Krzaczek E, Kącki Z, Szypuła B (2016a) Coexistence of ancient forest species as an indicator of high species richness. For Ecol Manage 365:12–21. https://doi.org/10.1016/j.foreco.2016.01.012

    Article  Google Scholar 

  • Stefańska-Krzaczek E, Staniaszek-Kik M, Fałtynowicz W (2016b) Positive aspects of clear-cut logging? Ground bryophyte diversity along the age gradient of managed Pinus sylvestris stands. Cryptogam Bryol 37(2):181–197. https://doi.org/10.7872/cryb/v37.iss2.2016.181

    Article  Google Scholar 

  • Stevenson SK, Coxson DS (2015) Can partial-cut harvesting be used to manage terrestrial lichen habitat? A review of recent evidence. Rangifer 35(2):11–26. https://doi.org/10.7557/2.35.2.3461

    Article  Google Scholar 

  • Sulyma R, Coxson DS (2001) Microsite displacement of terrestrial lichens by feather moss mats in late seral pine-lichen woodlands of north-central British Columbia. Bryologist 104(4):505–516. https://doi.org/10.1639/0007-2745(2001)104[0505:MDOTLB]2.0.CO;2

    Article  Google Scholar 

  • Thor GR (1997) Red-listed lichens in Sweden: habitats, threats, protection, and indicator value in boreal coniferous forests. Biodivers Conserv 7:59–72. https://doi.org/10.1023/A:1008807729048

    Article  Google Scholar 

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x

    Article  Google Scholar 

  • Tichý L, Holt J (2006) JUICE program for management, analysis and classification of ecological data. Program manual. Vegetation Science Group, Masaryk University Brno, Czech Republic

    Google Scholar 

  • Tichý L, Holt J, Nejezchlebová M (2010) JUICE program for management, analysis and classification of ecological data. 2nd Edition of the Program Manual, 2nd part. Vegetation Science Group, Masaryk University Brno, Brno

    Google Scholar 

  • Tonteri T, Salemaa M, Rautio P, Hallikainen V, Korpela L, Merilä P (2016) Forest management regulates temporal change in the cover of boreal plant species. For Ecol Manage 381:115–124. https://doi.org/10.1016/j.foreco.2016.09.015

    Article  Google Scholar 

  • van Dobben HF, de Vries W (2017) The contribution of nitrogen deposition to the eutrophication signal in understorey plant communities of European forests. Ecol Evol 7(1):214–227. https://doi.org/10.1002/ece3.2485

    Article  PubMed  Google Scholar 

  • van Tol G, Dobben HV, Schmidt P, Klap JM (1998) Biodiversity of Dutch forest ecosystems as affected by receding groundwater levels and atmospheric deposition. Biodivers Conserv 7(2):221–228. https://doi.org/10.1023/A:1008888519478

    Article  Google Scholar 

  • van Dobben HF, ter Braak CJF, Dirkse GM (1999) Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest. For Ecol Manage 114(1):83–95. https://doi.org/10.1016/S0378-1127(98)00383-1

    Article  Google Scholar 

  • van Herk CV, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34(02):141–154. https://doi.org/10.1006/LICH.2002.0378

    Article  Google Scholar 

  • Waterhouse MJ, Armleder HM, Nemec AF (2011) Terrestrial lichen response to partial cutting in lodgepole pine forests on caribou winter range in west-central British Columbia. Rangifer 31(2):119–134. https://doi.org/10.7557/2.31.2.1996

    Article  Google Scholar 

  • Wirth V (1992) Zeigerwerte von Flechten. In: Ellenberg H, Weber H, Düll R, Wirth V, Werner W (eds) Paulißen D Zeigerwerte von Pflanzen in Mitteleuropa, vol 18. Scripta Geobotanica, Erich Goltze KG, Göttingen, pp 5–258

    Google Scholar 

  • Zaniewski P, Potoczny B, Matuszkiewicz JM (2016) Modelling the stability of Cladonia-Scots pine forest (Cladonio-Pinetum Juraszek 1927) within Bory Tucholskie National Park using the repeated chronosequence method. Sylwan 160(5):397–406 (in Polish)

    Google Scholar 

  • Zeeberg J (1998) The European sand belt in eastern Europe - and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27:127–139. https://doi.org/10.1111/j.1502-3885.1998.tb00873.x

    Article  Google Scholar 

  • Zerbe S (2002) Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. For Ecol Manage 167(1):27–42. https://doi.org/10.1016/S0378-1127(01)00686-7

    Article  Google Scholar 

Download references

Acknowledgements

The source of the climate data used for this study is information shared according to the Agreement No. 13/2016. The data were collected and processed by the Institute of Meteorology and Water Management—National Research Institute (IMGW-BIP) as a result of standard procedures by the state hydrological and meteorological services. The research was conducted in the University of Wrocław and in the University of Silesia and was financed from own funds. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Maps and materials necessary for the field work were made available by the Management and prepared by the Employees of the Przymuszewo Forest Inspectorate. We also deeply appreciate the comments of our reviewers, which helped us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Stefańska-Krzaczek.

Additional information

Communicated by Jarmo Holopainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefańska-Krzaczek, E., Fałtynowicz, W., Szypuła, B. et al. Diversity loss of lichen pine forests in Poland. Eur J Forest Res 137, 419–431 (2018). https://doi.org/10.1007/s10342-018-1113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-018-1113-4

Keywords

Navigation