Skip to main content

Landscape genetics highlight the importance of sustainable management in European mountain spruce forests: a case study on Western capercaillie

Abstract

The mountain spruce forests of the Western Carpathians have experienced a dramatic deterioration in the last decades increasing the landscape fragmentation. This considerably affected the Western capercaillie population recently surviving within small habitat patches surrounded by unfavourable habitats. Our study shows that the long-term isolation resulted in genetic differentiation with decreasing trend in allelic richness towards the most adjacent western subpopulations. We evaluated dispersal possibilities within the landscape and identified barriers and the most critical corridors between genetically distinct subpopulations. Landscape genetic analysis confirmed that the isolation by environmental features explains the observed genetic patterns better than straight geographical distance. We highlight the urgent need for an active conservation management in the critical habitats where dispersion might be constrained or “bottlenecked” in order to ensure gene flow within the fragmented capercaillie metapopulation of the Western Carpathian mountain forests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manag 66(3):912–918. doi:10.2307/3803155

    Article  Google Scholar 

  2. Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat. A review. Oikos 71(3):355–366

    Article  Google Scholar 

  3. Bates D, Mächler M, Bolker BM, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  4. Belkhir K, Borsa P, Chikhi L, Raufaste, N, Bonhomme F (1996–2004) genetix 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, populations, interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)

  5. Borchtchevski V, Moss R (2014) Age structure of capercaillie males (Tetrao urogallus) in NW Russia may reflect two-way movements—a hypothesis. Ornis Fennica 91:14–28

    Google Scholar 

  6. Broome A, Connolly T, Quine CP (2014) An evaluation of thinning to improve habitat for capercaillie (Tetrao urogallus). For Ecol Manag 314:94–103. doi:10.1016/j.foreco.2013.11.038

    Article  Google Scholar 

  7. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7(5):747–756. doi:10.1111/j.1471-8286.2007.01769.x

    Article  Google Scholar 

  8. Demko M, Krištín A, Puchala P (2013) Red list of birds in Slovakia. Tichodroma 25:69–78 [In Slovak w. Engl. sum.]

    Google Scholar 

  9. Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  10. Durrant CJ, Beebee TJC, Greenaway F, Hill DA (2009) Evidence of recent population bottlenecks and inbreeding in British populations of Bechstein’s bat (Myotis bechsteinii). Conserv Genet 10:489–496. doi:10.1007/s10592-008-9639-5

    Article  Google Scholar 

  11. Dutta T, Sharma S, McRae BH et al (2015) Connecting the dots: mapping habitat connectivity for tigers in Central India. Reg Environ Change 16(1):43–52. doi:10.1007/s10113-015-0877-z

    Google Scholar 

  12. Earl DA, vonHoldt BM (2012) structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  13. EEA (2012) European Environment Agency. CORINE Land Cover 2012. http://www.eea.europa.eu/data-and-maps/. Accessed 15 April 2015

  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    CAS  Article  PubMed  Google Scholar 

  15. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075. doi:10.1046/j.1365-294x.1998.00389.x

    CAS  Article  PubMed  Google Scholar 

  17. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638. doi:10.1111/j.0014-3820.2005.tb01814.x

    CAS  Article  PubMed  Google Scholar 

  18. Hofstetter L, Arlettaz R, Bollmann K, Braunisch V (2015) Interchangeable sets of complementary habitat variables allow for flexible, site-adapted wildlife habitat management in forest ecosystems. Basic Appl Ecol 16(5):420–433. doi:10.1016/j.baae.2015.02.010

    Article  Google Scholar 

  19. Horváth MB, Martínez-Cruz B, Negro JJ et al (2005) An overlooked DNA source for non-invasive genetic analysis in birds. J Avian Biol 36:84–88. doi:10.1111/j.0908-8857.2005.03370.x

    Article  Google Scholar 

  20. Jacob G, Bollman K, Schmid B, Gugerli F (2006) Landscape barriers induce genetic structuring in the capercaillie (Tetrao urogallus L.) in the Swiss Alps—implications for the management of the species, pp 37–60. In: Jacob B (ed) Dissertation thesis: conservation genetics of the capercaillie (Tetrao urogallus) in the Swiss Alps. 123 p

  21. Jacquin A, Chéret V, Denux J-P et al (2005) Habitat suitability modelling of capercaillie (Tetrao urogallus) using earth observation data. J Nat Conserv 13:161–169. doi:10.1016/j.jnc.2005.02.002

    Article  Google Scholar 

  22. Jakobsson M, Rosenberg NA (2007) Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinform (Oxf) 24(14):1801–1806. doi:10.1093/bioinformatics/btm233

    Article  Google Scholar 

  23. Johansson MP, McMahon BJ, Höglund J, Segelbacher G (2012) Amplification success of multilocus genotypes from feathers found in the field compared with feathers obtained from shot birds. Ibis 154(1):15–20. doi:10.1111/j.1474-919X.2011.01194.x

    Article  Google Scholar 

  24. Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi:10.1111/j.1365-294X.2008.03887.x

    Article  PubMed  Google Scholar 

  25. Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. doi:10.1111/j.1471-8286.2004.00845.x

    CAS  Article  Google Scholar 

  26. Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788. doi:10.1111/2041-210X.12067

    Article  Google Scholar 

  27. Klinga P, Mikoláš M, Zhelev P, Höglund J, Paule L (2015) Genetic differentiation of western capercaillie in the Carpathian Mountains: the importance of post glacial expansion and habitat connectivity. Biol J Linn Soc 16(4):873–889. doi:10.1111/bij.12643

    Article  Google Scholar 

  28. Lapin M, Faško P, Melo M, Šťastný P, Tomlain J (2011) Atlas krajiny SR. Klimatické oblasti. [Landscape atlas of the Slovak Republic. Climatic zones] https://www.geo.enviroportal.sk/atlassr/. Aug 2016

  29. McRae, BH, Kavanagh D (2011) Linkage mapper connectivity analysis software. Computer software program produced by the Nature Conservancy in Seattle, WA, USA. http://www.circuitscape.org/linkagemapper. Accessed 16 Apr 2016

  30. McRae BH (2012a). Barrier mapper connectivity analysis software. The Nature Conservancy, Seattle WA. http://www.circuitscape.org/linkagemapper. Accessed 16 Apr 2016

  31. McRae BH (2012b) Pinch-point mapper connectivity analysis software. The Nature Conservancy, Seattle WA. http://www.circuitscape.org/linkagemapper. Accessed 16 Apr 2016

  32. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. doi:10.1890/07-1861.1

    Article  PubMed  Google Scholar 

  33. McRae BH, Hall SA, Beier P, Theobald DM (2012) Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 7(12):e52604. doi:10.1371/journal.pone.0052604

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Meirmans PG, Hedrick PW (2011) Assessing population structure: F ST and related measures. Mol Ecol Resour 11:5–18. doi:10.1111/j.1755-0998.2010.02927.x

    Article  PubMed  Google Scholar 

  35. Mikoláš M, Kalafusová I, Tejkal M, et al (2013) Stav habitatu jadrovej populácie hlucháňa hôrneho (Tetrao urogallus) v Západných Karpatoch: Je ešte pre hlucháňa na Slovensku miesto? [Habitat conditions of the core population of the Western Carpathians: is there still place for the species in Slovakia?]. Sylvia 49:79–98 [In Slovak w. Engl. sum.]

  36. Mikoláš M, Svitok M, Tejkal M et al (2015) Evaluating forest management intensity on an umbrella species: capercaillie persistence in central Europe. Forest Ecol Manag 354:26–34. doi:10.1016/j.foreco.2015.07.001

    Article  Google Scholar 

  37. Mikoláš M, Tejkal M, Kuemmerle T et al (2016) Forest management impacts on capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians. Landsc Ecol. doi:10.1007/s10980-016-0433-3

    Google Scholar 

  38. Mitchell MW, Rowe B, Sesink Clee PR, Gonder MK (2013) TESS Ad-mixer: a novel program for visualizing TESS Q matrices. Conserv Genet Res 5(4):1075–1078. doi:10.1007/s12686-013-9987-4

    Article  Google Scholar 

  39. Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375

    CAS  Article  PubMed  Google Scholar 

  40. Myberget S (1978) Vandringer og aklersfordeling hos orrfugl og sturfugl i Skandinavia. Var Fuglfauna 1:69–75

    Google Scholar 

  41. Nappée C, Douhéret G (2004) Development of the reintroduced capercaillie population in the Parc national des Cévennes. Grouse News 28:9–11

    Google Scholar 

  42. Pascual-Hortal L, Saura S (2008) Integrating landscape connectivity in broad-scale forest planning through a new graph based habitat availability methodology: application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur J For Res 127:23–31. doi:10.1007/s10342-006-0165-z

    Article  Google Scholar 

  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  45. Rolstad J (1991) Consequences of forest fragmentation for the dynamics of bird populations: conceptual issues and the evidence. Biol J Linn Soc 42:149–163

    Article  Google Scholar 

  46. Rosenberg AN (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi:10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  47. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  48. Saniga M (1992) Desať rokov pozorovaní hlucháňa obyčajného (Tetrao urogallus) na lokalitách vo Veľkej Fatre a Nízkych Tatrách.[Ten years of capercaillie (Tetrao urogallus) observation on sites in the Great Fatra and in the Low Tatras]. Tichodroma 4:63–73 [In Slovak w. Engl. sum.]

  49. Saniga M (2003) Ecology of the capercaillie (Tetrao urogallus) and forest management in relation to its protection in the West Carpathians. J For Sci 49(5):229–239

    Google Scholar 

  50. Saniga M (2004) Seasonal differences in habitat use in capercaillie (Tetrao urogallus) in the West Carpathians. Biol (Bratisl) 59:627–636

    Google Scholar 

  51. Saniga M (2011) Why the capercaillie population (Tetrao urogallus) in the mountain forests in the central Slovakia decline? Folia Oecol 38:110–117

    Google Scholar 

  52. Saniga M (2012) Population dynamics of capercaillie Tetrao urogallus on leks in Central Slovakia in the period 1981–2012. Grouse News 44:5–9

    Google Scholar 

  53. Segelbacher G, Storch I (2002) Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline. Mol Ecol 11:1669–1677. doi:10.1046/j.1365-294X.2002.01565.x

    CAS  Article  PubMed  Google Scholar 

  54. Segelbacher G, Höglund J, Storch I (2003) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780. doi:10.1046/j.1365-294X.2003.01873.x

    CAS  Article  PubMed  Google Scholar 

  55. Segelbacher G, Manel S, Tomiuk J (2008) Temporal and spatial analyses disclose consequences of habitat fragmentation on the genetic diversity in capercaillie (Tetrao urogallus). Mol Ecol 17:2356. doi:10.1111/j.1365-294X.2008.03767.x

    CAS  Article  PubMed  Google Scholar 

  56. Storch I (1994) Habitat and survival of capercaillie Tetrao urogallus nests and broods in the Bavarian Alps. Biol Conserv 70:237–243

    Article  Google Scholar 

  57. Storch I (2000) Status survey and conservation action plan 2000–2004: Grouse. IUCN Gland Switzerland and Cambridge UK and The World Pheasant Association Reading, UK, 112 p

  58. Storch I (2002) On spatial resolution in habitat models: can small-scale forest structure explain capercaillie numbers? Conserv Ecol 6(1):6

    Article  Google Scholar 

  59. Storch I (2007) Conservation status of grouse worldwide: an update. Wildl Biol 13:5–12. doi:10.2981/0909-6396(2007)13[5:CSOGWA]2.0.CO;2

  60. Storch I, Segelbacher G (2000) Genetic correlates of spatial population structure in central European capercaillie Tetrao urogallus and black grouse T. tetrix: a project in progress. Wildl Biol 6:305–310

    Google Scholar 

  61. Swenson JE (1991) Is the hazel grouse a poor disperser? Trans Congr Int Union Game Biol 20:347–352

    Google Scholar 

  62. Thiel D, Jenni-Eiermann S, Braunisch V et al (2008) Ski tourism affects habitat use and evokes a physiological stress response in capercaillie Tetrao urogallus: a new methodological approach. J Appl Ecol 45(3):845–853. doi:10.1111/j.1365-2664.2008.01465.x

    Article  Google Scholar 

  63. Valière N (2002) gimlet: a computer program for analyzing genetic individual identification data. Mol Ecol Resour 2(3):377–379. doi:10.1046/j.1471-8286.2002.00228.x-i2

    Google Scholar 

  64. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  65. Vázquez JF, Pérez T, Albornoz J, Domínguez A (2013) Census and effective population size of the endangered Cantabrian capercaillie (Tetrao urogallus) estimated from non-invasive samples. Grouse News 46:12–26

    Google Scholar 

  66. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    CAS  PubMed  Google Scholar 

  67. Wright HE Jr (1974) Landscape development, forest fire and wilderness management. Science 186:487–495

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to numerous colleagues from the State Nature Conservancy of the Slovak Republic, the State Forest Enterprises of the Slovak Republic and NGO “OZ Prales” who assisted us with sampling. We would like to mention namely M. Apfelová, Z. Kaliská, J. Tesák, P. Chválik, M. Hejnýš, Ľ. Pitoňák, M. Kormančík, M. Lehocký, P. Lenko, M. Mikoláš and I. Kalafusová. We are grateful to G. Baloghová and V. Slivková for the assistance in DNA extractions. Thanks are also due to E. M. Ritch-Krč for improving the English. We are grateful to anonymous reviewer and guest editor’s comments that improved the manuscript. This work was financially supported by the project VEGA 1/0303/12 “Genetic differentiation of fragmented populations of capercaillie (Tetrao urogallus) and black grouse (Tetrao tetrix) in Western Carpathians” and the project under the European Regional Development Fund (ERDF)—Environment Operational Program of the EU, ITMS 24150120027 The improvement of the protection status of capercaillie and black grouse.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Klinga.

Additional information

This article originates from the conference “Mountain Forest Management in a Changing World”, held 7–9 July 2015 in Smokovec, High Tatra Mountains, Slovakia.

Communicated by Manfred J. Lexer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 904 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klinga, P., Smolko, P., Krajmerová, D. et al. Landscape genetics highlight the importance of sustainable management in European mountain spruce forests: a case study on Western capercaillie. Eur J Forest Res 136, 1041–1050 (2017). https://doi.org/10.1007/s10342-017-1034-7

Download citation

Keywords

  • Forest management
  • Genetic diversity
  • Gene flow
  • Habitat fragmentation
  • Barriers
  • Corridors