Skip to main content

Advertisement

Log in

Middle-term effects after timber harvesting with heavy machinery on a fine-textured forest soil

  • Original paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Global competition in timber market leads to intensive mechanization of harvesting processes. Consequently heavy equipment is needed, which induces tremendous soil stresses, resulting in severe compaction and degradation of top- and subsoils, especially under moist conditions. Under these circumstances, it is still doubtful that natural processes are able to regenerate the impairments of a harmed forest soil. To test this hypothesis, a long-term field plot has been established in 2003 in Rhineland-Palatinate (Western Germany) on a silty clay loam Cambisol, combined with a measurement of the initial effects of mechanized timber logging on soil properties. Therefore, harvesting operations with a conventional heavy wood-loaded forwarder (Ponsse Caribou; total mass: 22 tons; maximum wheel load: 3.9 tons) were simulated to carry out two treatments with different driving intensities (1 pass, 5 passes). In 2013, analyses were reiterated (focusing on soil physical properties) to estimate the recovery status after a 10 year time span. The results reveal that the structural deformations associated with harmful effects on topsoil and subsoil, caused by wheeling, are still present. A slight regeneration can be considered for the low passing frequency, whereas the higher trafficked forest soil seems to be irreversibly damaged. It is to be expected that these adverse effects will never be fully recovered by natural regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alakukku L (1996) Persistence of soil compaction due to high axle load traffic. II. Long-term effects on the properties of fine-textured and organic soils. Soil Tillage Res 4(37):223–238

    Article  Google Scholar 

  • Ampoorter E, Schrijver Ad, Lv Nevel, Hermy M, Verheyen K (2012) Impact of mechanized harvesting on compaction of sandy and clayey forest soils: results of a meta-analysis. Ann For Sci 69(5):533–542. doi:10.1007/s13595-012-0199-y

    Article  Google Scholar 

  • Arthur E, Schjønning P, Moldrup P, de Jonge LW (2012) Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils. Geoderma 173–174:50–60. doi:10.1016/j.geoderma.2012.01.007

    Article  CAS  Google Scholar 

  • Ballard TM (2000) Impacts of forest management on northern forest soils. For Ecol Manage 133(1):37–42. doi:10.1016/S0378-1127(99)00296-0

    Article  Google Scholar 

  • Baumgartl T, Horn R (1991) Effect of aggregate stability on soil compaction. Soil Tillage Res 19(2):203–213. doi:10.1016/0167-1987(91)90088-F

    Article  Google Scholar 

  • Becher HH, Kainz M (1983) Auswirkungen einer langjährigen Stallmistdüngung auf das Bodengefüge im Lößgebiet bei Straubing. Zeitschrift für Acker- und Pflanzenbau 152:152–158

    Google Scholar 

  • Berisso FE, Schjønning P, Keller T, Lamandé M, Simojoki A, Iversen BV, Alakukku L, Forkman J (2013) Gas transport and subsoil pore characteristics: anisotropy and long-term effects of compaction. Geoderma 195–196:184–191. doi:10.1016/j.geoderma.2012.12.002

    Article  Google Scholar 

  • Besson A, Séger M, Giot G, Cousin I (2013) Identifying the characteristic scales of soil structural recovery after compaction from three in-field methods of monitoring. Geoderma 204–205:130–139. doi:10.1016/j.geoderma.2013.04.010

    Article  Google Scholar 

  • Bottinelli N, Hallaire V, Goutal N, Bonnaud P, Ranger J (2014) Impact of heavy traffic on soil macroporosity of two silty forest soils: Initial effect and short-term recovery. Geoderma 217–218:10–17. doi:10.1016/j.geoderma.2013.10.025

    Article  Google Scholar 

  • BS EN 1997-2:2007 (2007) Eurocode 7—geotechnical design—Part 2: ground invenstigation and testing. British-Standards

  • Cambi M, Certini G, Neri F, Marchi E (2015) The impact of heavy traffic on forest soils: a review. For Ecol Manage 338:124–138. doi:10.1016/j.foreco.2014.11.022

    Article  Google Scholar 

  • Clemens D (2008) Bodenkundliche Feldmethoden zur Identifikation alter Fahrlinien. AFZ Der Wald pp 277–278

  • Cook FJ (2002) The twin-ring method for measuring saturated hydraulic conductivity and sorptivity in the field. In: MC Kenzie N, Couglan K, Resswell HC (eds) Soil Physical Measurement and Interpretation for Land Evaluation, pp 108–118

  • Ebeling C, Lang F, Gaertig T (2016) Structural recovery in three selected forest soils after compaction by forest machines in Lower Saxony, Germany. For Ecol Manage 359:74–82. doi:10.1016/j.foreco.2015.09.045

    Article  Google Scholar 

  • Felix-Henningsen P (1994) Mesozoic-Tertiary weathering and soil formation on slates of the Rhenish Massif. Germany. CATENA 21(2):229–242. doi:10.1016/0341-8162(94)90014-0

    Article  Google Scholar 

  • Felix-Henningsen P, Spies ED, Zakosek H (1991) Genese und Stratigraphie periglazialer Deckschichten auf der Hochfläche des Ost-Hunsrücks (Rheinisches Schiefergebirge). Eiszeit Gegenw 41(1):56–69

    Google Scholar 

  • Frey B (2010) Bewertung von befahrungsbedingten Bodenveränderungen mittels Bakterienpopulationen. Schweizerische Zeitschrift fur Forstwesen 161(12):498–503. doi:10.3188/szf.2010.0498

    Article  Google Scholar 

  • Gaertig T, Schack-Kirchner H, Hildebrand EE, von Wilpert K (2002) The impact of soil aeration on oak decline in southwestern Germany. For Ecol Manage 159(1):15–25. doi:10.1016/S0378-1127(01)00706-X

    Article  Google Scholar 

  • Goutal N, Keller T, Défossez P, Ranger J (2013) Soil compaction due to heavy forest traffic: measurements and simulations using an analytical soil compaction model. Ann For Sci 70(5):545–556. doi:10.1007/s13595-013-0276-x

    Article  Google Scholar 

  • Goutal-Pousse N, Lamy F, Ranger J, Boivin P (2016) Structural damage and recovery determined by the colloidal constituents in two forest soils compacted by heavy traffic. Eur J Soil Sci 67(2):160–172. doi:10.1111/ejss.12323

    Article  CAS  Google Scholar 

  • Grigal DF (2000) Effects of extensive forest management on soil productivity. For Ecol Manage 138(1):167–185. doi:10.1016/S0378-1127(00)00395-9

    Article  Google Scholar 

  • Hanus H, Kmoch HG (1965) Beitrag zur Methodik der Wasserpermeabilitätsmessung an ungestörten Bodenproben. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 111(1):10–23. doi:10.1002/jpln.19651110103

    Article  Google Scholar 

  • Hartge KH, Horn R (2009) Die physikalische Untersuchung von Böden: Praxis Messmethoden Auswertung, auflage: 4. aufl. 2009 edn. Schweizerbart’sche, E

  • Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, Lüscher P, Widmer F, Frey B (2014) Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J 8(1):226–244. doi:10.1038/ismej.2013.141

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand EE (1983) Der Einfluß der Bodenverdichtung auf die Bodenfunktionen im forstlichen Standort. Forstwissenschaftliches Centralblatt 102(1):111–125. doi:10.1007/BF02741844

    Article  Google Scholar 

  • Horn R (1990) Aggregate characterization as compared to soil bulk properties. Soil Tillage Res 17(3):265–289. doi:10.1016/0167-1987(90)90041-B

    Article  Google Scholar 

  • Horn R, Taubner H, Wuttke M, Baumgartl T (1994) Soil physical properties related to soil structure. Soil Tillage Res 30(2):187–216. doi:10.1016/0167-1987(94)90005-1

    Article  Google Scholar 

  • Horn R, Domzzał H, Słowińska-Jurkiewicz A, van Ouwerkerk C (1995) Soil compaction processes and their effects on the structure of arable soils and the environment. Soil Tillage Res 35(1):23–36. doi:10.1016/0167-1987(95)00479-C

    Article  Google Scholar 

  • Horn R, Vossbrink J, Becker S (2004) Modern forestry vehicles and their impacts on soil physical properties. Soil Tillage Res 79(2):207–219. doi:10.1016/j.still.2004.07.009

    Article  Google Scholar 

  • Keller T, Lamandé M, Peth S, Berli M, Delenne JY, Baumgarten W, Rabbel W, RadjaÃŕ F, Rajchenbach J, Selvadurai APS, Or D (2013) An interdisciplinary approach toward improved understanding of soil deformation during compaction. Soil Tillage Res 128:61–80. doi:10.1016/j.still.2012.10.004

    Article  Google Scholar 

  • Kim H, Anderson SH, Motavalli PP, Gantzer CJ (2010) Compaction effects on soil macropore geometry and related parameters for an arable field. Geoderma 160(2):244–251. doi:10.1016/j.geoderma.2010.09.030

    Article  Google Scholar 

  • Kleber A (1997) Cover-beds as soil parent materials in midlatitude regions. CATENA 30(2):197–213. doi:10.1016/S0341-8162(97)00018-0

    Article  Google Scholar 

  • Kleber A, Terhorst B (2013) Mid-Latitude Slope Deposits. Elsevier Ltd, Oxford

    Google Scholar 

  • Kmoch HG, Hanus H (1965) Vereinfachte Methodik und Auswertung der Permeabilitätsmessung des Bodens für Luft. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 111(1):1–10. doi:10.1002/jpln.19651110102

    Article  Google Scholar 

  • Knothe D (2000) Physikalische und chemische Analysen. Vorüberlegungen. In: Barsch H, Billwitz K, Hanus H (eds) Arbeitsmethoden in Physiogeographie und Geoökologie, auflage: 1. aufl. 2000 edn, pp 293–295

  • Köhn M (1929) Bemerkungen zur mechanischen Bodenanalyse IV. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 14(3):268–280. doi:10.1002/jpln.19290140311

    Article  Google Scholar 

  • Lüscher P (2010) Bodenveränderungen und Typisierung von Fahrspuren nach physikalischer Belastung. Schweiz Zeitschrift für Forstwesen 161(12):504–509

    Article  Google Scholar 

  • Mbagwu JSC, Auerswald K (1999) Relationship of percolation stability of soil aggregates to land use, selected properties, structural indices and simulated rainfall erosion. Soil Tillage Res 50(3):197–206. doi:10.1016/S0167-1987(99)00006-9

    Article  Google Scholar 

  • Meyer C, Lüscher P, Schulin R (2014) Enhancing the regeneration of compacted forest soils by planting black alder in skid lane tracks. Eur J Forest Res 133(3):453–465. doi:10.1007/s10342-013-0776-0

    Article  Google Scholar 

  • Nawaz MF, Bourrié G, Trolard F (2013) Soil compaction impact and modeling: a review. Agron Sust Dev 33(2):291–309. doi:10.1007/s13593-011-0071-8

    Article  Google Scholar 

  • Page-Dumroese DS, Jurgensen MF, Tiarks AE, Ponder F Jr, Sanchez FG, Fleming RL, Kranabetter JM, Powers RF, Stone DM, Elioff JD, Scott DA (2006) Soil physical property changes at the North American Long-Term Soil Productivity study sites: 1 and 5 years after compaction. Can J For Res 36:551–564. doi:10.1139/X05-273

    Article  Google Scholar 

  • Powers RF, Sanchez FG, Scott DA, Page-Dumroese D (2004) The North American Long-Term Soil Productivity Experiment: Coast-to-coast findings from the first decade. pp 8–11

  • Quesnel H, Curran M (2000) Shelterwood harvesting in root-disease infected stands—post-harvest soil disturbance and compaction. For Ecol Manage 133(1):89–113. doi:10.1016/S0378-1127(99)00301-1

    Article  Google Scholar 

  • Richards LA, Fireman M (1943) Pressure-Plate apparatus for measuring moisture sorption and transmission by soils. Soil Sci 56(6):395–404

    Article  CAS  Google Scholar 

  • Riggert R (2015) Spannungseinträge unter Holzerntemaschinen und Auswirkungen auf bodenphysikalische Parameter. Dissertation, Inst. für Pflanzenernährung und Bodenkunde der Christian-Albrechts-Universität zu Kiel

  • Riggert R, Fleige F, Kietz B, Gaertig T, Horn R (2016) Stress distribution under forestry machinery and consequences for soil stability. Soil Sci Soc Am J 80(1): doi:10.2136/sssaj2015.03.0126

  • Sauer D (2002) Genese, Verbreitung und Eigenschaften periglazialer Lagen im Rheinischen Schiefergebirge—anhand von Beispielen aus Westerwald. Hunsrück und Eifel, Schriftenreihe zur Bodenkunde, Landeskultur und Landschaftsökologie 36

  • Schneider R (2005) Initiale bodenphysikalische und -mechanische Auswirkungen einer Waldbodenbefahrung mit einer schweren Forstmaschine. Mitteilungen der deutschen bodenkundlichen Gesellschaft 107(1):95–98

    Google Scholar 

  • Schneider R, Schüler G (2007) Impact of heavy forest machinery on physical properties of forest soils. In: WaReLa Scientific Conference on Integrated Catchment Management for Hazard Mitigation, pp 33–37

  • Schneider R, Schüler G, Reichardt M, Schobel S, Schröder D (2003) Waldbodenregeneration nach Befahrung durch eine Forstmaschine. Mitteilungen der deutschen bodenkundlichen Gesellschaft 102(1):127 f

  • Semmel H, Horn R, Hell U, Dexter AR, Schulze ED (1990) The dynamics of soil aggregate formation and the effect on soil physical properties. Soil Technol 3(2):113–129. doi:10.1016/S0933-3630(05)80002-9

    Article  Google Scholar 

  • Stafford JV, de Carvalho Mattos P (1981) The effect of forward speed on wheel-induced soil compaction: Laboratory simulation and field experiments. J Agric Eng Res 26(4):333–347. doi:10.1016/0021-8634(81)90075-5

    Article  Google Scholar 

  • Vance ED (2000) Agricultural site productivity: principles derived from long-term experiments and their implications for intensively managed forests. For Ecol Manage 138(1):369–396. doi:10.1016/S0378-1127(00)00425-4

    Article  Google Scholar 

  • Voßbrink J (2005) Bodenspannungen und Deformationen in Waldböden durch Ernteverfahren. No. 65 in Hochschulschriftenreihe, Inst. für Pflanzenernährung und Bodenkunde (Universität Kiel)

  • Vossbrink J, Horn R (2004) Modern forestry vehicles and their impact on soil physical properties. Eur J Forest Res 123(4):259–267. doi:10.1007/s10342-004-0040-8

    Article  Google Scholar 

  • Werner D, Werner B (2001) Verdichtung und Regeneration des Gefüges eines schluffigen Tonbodens (Tschernosem): Bodenphysikalische, computertomographische und rasterelektronenmikroskopische Untersuchungen. J Plant Nutr Soil Sci 164(1):79–90. doi:10.1002/1522-2624(200102)164:1<79:AID-JPLN79>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • von Wilpert K, Schäffer J (2006) Ecological effects of soil compaction and initial recovery dynamics: a preliminary study. Eur J Forest Res 125(2):129–138. doi:10.1007/s10342-005-0108-0

    Article  Google Scholar 

  • WRB (2006) World Reference Base for Soil Resources: A Framework for International Classification, Correlation and Communication: World Soil Resources Reports. 103, 2006th edn. Food and Agriculture Organization

Download references

Acknowledgments

We acknowledge Andreas Kaiser for fruitful discussion as well as language improvements and would like to thank the two anonymous reviewers who helped to enhance the manuscript with their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Klaes.

Additional information

Communicated by Eric R. Labelle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaes, B., Struck, J., Schneider, R. et al. Middle-term effects after timber harvesting with heavy machinery on a fine-textured forest soil. Eur J Forest Res 135, 1083–1095 (2016). https://doi.org/10.1007/s10342-016-0995-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-016-0995-2

Keywords

Navigation