Skip to main content

Advertisement

Log in

Enhancing the regeneration of compacted forest soils by planting black alder in skid lane tracks

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Soil compaction due to the use of heavy machinery for timber harvesting has become a widespread problem in forestry. However, only few studies deal with the regeneration of compacted forest soils. In the present study, we examined the potential of accelerating soil regeneration by planting black alder trees (Alnus glutinosa (L.) Gaertn.) in skid lane tracks. In 2003, seedlings were planted into the rut beds of severely compacted skid lanes in two Swiss forest sites. In addition, some of the ruts were filled with compost. In 2009 and 2010, we assessed the success of these measures by analysing physical parameters of soil structure (bulk density, total and coarse porosity and air permeability), root densities and tree growth. Tree growth was exceptionally strong on the skid lanes. Total and coarse soil porosity and air permeability showed significant increase in planted skid lanes as compared to untreated control subplots, approaching values found for untrafficked soil in the immediate vicinity. All soil physical parameters were closely correlated to root mass density. Compost application enhanced tree growth and soil structure regeneration on one site, but had a retarding effect on the other site. Planting black alders has great potential as an environmentally friendly measure to accelerate the structural regeneration of compacted forest soils in temperate humid climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alakukku L (1996) Persistence of soil compaction due to high axle load traffic. 2. Long-term effects on the properties of fine-textured and organic soils. Soil Tillage Res 37:223–238

    Article  Google Scholar 

  • Alameda D, Villar R (2009) Moderate soil compaction: implications on growth and architecture in seedlings of 17 woody plant species. Soil Tillage Res 103(2):325–331. doi:10.1016/j.still.2008.10.029

    Article  Google Scholar 

  • Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogechemistry 42(1/2):55–72

    Article  Google Scholar 

  • Apel K (2001) Wandel der Arbeitswelt der Waldarbeiter im Übergang zum 21. Jahrhundert. AFZ/Der Wald 1:14–16

    Google Scholar 

  • Armstrong W, Armstrong J (2005) Stem photosynthesis not pressurized ventilation is responsible for light-enhanced oxygen supply to submerged roots of alder (Alnus glutinosa). Ann Bot 96(4):591–612. doi:10.1093/aob/mci213

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson J (1999) Nutrient uptake and growth of barley as affected by soil compaction. Plant Soil 208(1):9–19. doi:10.1023/a:1004484518652

    Article  CAS  Google Scholar 

  • Bassett IE, Simcock RC, Mitchell ND (2005) Consequences of soil compaction for seedling establishment: implications for natural regeneration and restoration. Austral Ecol 30(8):827–833

    Article  Google Scholar 

  • Batey T (2009) Soil compaction and soil management—a review. Soil Use Manag 25(4):335–345. doi:10.1111/j.1475-2743.2009.00236.x

    Article  Google Scholar 

  • Berli M, Kulli B, Attinger W, Keller M, Leuenberger J, Fluhler H, Springman SM, Schulin R (2004) Compaction of agricultural and forest subsoils by tracked heavy construction machinery. Soil Tillage Res 75(1):37–52. doi:10.1016/s0167-1987(03)00160-0

    Article  Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils. Water Resour Res 18(5):1311–1325. doi:10.1029/WR018i005p01311

    Article  Google Scholar 

  • Blake GR, Nelson WW, Allmaras RR (1976) Persistence of subsoil compaction in a mollisol. Soil Sci Soc Am J 40(6):943–948

    Article  Google Scholar 

  • Boden AG (1982) Bodenkundliche Kartieranleitung, 3rd ed. Schweizerbart’sche Vertragsbuchhandlung (Nägele und Obermiller), Stuttgart

  • Brais S (2001) Persistence of soil compaction and effects on seedling growth in northwestern Quebec. Soil Sci Soc Am J 65:1263–1271

    Article  CAS  Google Scholar 

  • Brändli BR (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Birmensdorf, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL. Bundesamt für Umwelt, BAFU, Bern

  • Capowiez Y, Cadoux S, Bouchand P, Roger-Estrade J, Richard G, Boizard H (2009) Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biol Biochem 41(4):711–717. doi:10.1016/j.soilbio.2009.01.006

    Article  CAS  Google Scholar 

  • Carminati A, Vetterlein D, Weller U, Vogel HJ, Oswald SE (2009) When roots lose contact. Vadose Zone J 8(3):805–809. doi:10.2136/vzj.2008.0147

    Article  Google Scholar 

  • Claessens H, Oosterbaan A, Savill P, Rondeux J (2010) A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83(2):163–175

    Article  Google Scholar 

  • Corns IGW (1988) Compaction by forestry equipment and effects on coniferous seedling growth on 4 soils in the Alberta Foothills. Can J For Res 18(1):75–84

    Article  Google Scholar 

  • Delage P, Cui YJ, De Laure E (1998) Air flow through an unsaturated compacted silt. In: Proceedings of the 2nd international conference on unsaturated soils, Beijing, pp 563–568

  • Dexter AR (1987) Compression of soil around roots. Plant Soil 97(3):401–406. doi:10.1007/bf02383230

    Article  Google Scholar 

  • Dickerson BP (1976) Soil compaction after tree-length skidding in Northern Mississippi. Soil Sci Soc Am J 40(6):965–966

    Article  Google Scholar 

  • Dittert K, Wötzel J, Sattelmacher B (2006) Responses of Alnus glutinosa to anaerobic conditions—mechanisms and rate of oxygen flux into the roots. Plant Biol 8(2):212–223. doi:10.1055/s-2005-873041

    Article  PubMed  CAS  Google Scholar 

  • Dorioz JM, Robert M, Chenu C (1993) The role of roots, fungi and bacteria on clay particle organisation—an experimental approach. Geoderma 56(1–4):179–194. doi:10.1016/0016-7061(93)90109-x

    Article  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart, Stuttgart

    Google Scholar 

  • Ellenberg H, Klötzli F (1972) Waldgesellschaften und Waldstandorte der Schweiz. Mitteilungen/Schweizerische Anstalt für das Forstliche Versuchswesen; Band 8, 1972/Heft 4

  • Eschenbach C, Kappen L (1999) Leaf water relations of black alder [Alnus glutinosa (L.) Gaertn.] growing at neighbouring sites with different water regimes. Trees 14(1):28–38

    Article  Google Scholar 

  • Franz T (2010) Forstverwaltungssysteme. Norbert Verlag, Remagen-Oberwinter

    Google Scholar 

  • Froehlich HA (1979) Soil compaction from logging equipment—effects on growth of young Ponderosa Pine. J Soil Water Conserv 34(6):276–278

    Google Scholar 

  • Froehlich HA, Miles DWR, Robbins RW (1985) Soil bulk-density recovery on compacted skid trails in Central Idaho. Soil Sci Soc Am J 49(4):1015–1017

    Article  Google Scholar 

  • Gaertig T, Hildebrand EE, Schäffer J, Von Wilpert K (2000) Wirkung mechanischer Bodenlockerung auf Bodenbelüftung und Durchwurzelung. AFZ/Der Wald 21:1124–1126

    Google Scholar 

  • Gameda S, Raghavan GSV, McKyes E, Watson AK, Mehuys G (1994) Long-term effects of a single incidence of high axle load compaction on a clay soil in Quebec. Soil Tillage Res 29(2–3):173–177. doi:10.1016/0167-1987(94)90054-x

    Article  Google Scholar 

  • Gibbs RJ, Reid JB (1988) A conceptual model of changes in soil structure under different cropping systems. In: Stewart BA (ed) Advances in soil science, vol 8. Springer, New York, pp 123–149

  • Gill CJ (1975) Ecological significance of adventitious rooting as a response to flooding in woody species, with special reference to Alnus glutinosa (L) Gaertn. Flora 164(1):85–97

    Google Scholar 

  • Glavac V (1972) Über Höhenwuchsleistung und Wachstumsoptimum der Schwarzerle auf vergleichbaren Standorten in Nord-, Mittel- und Südeuropa. Schriftenreihe der Forstlichen Fakultät der Universität Göttingen 45

  • Greacen EL, Sands R (1980) Compaction of forest soils—a review. Aust J Soil Res 18(2):163–189. doi:10.1071/sr9800163

    Article  Google Scholar 

  • Håkansson I, Reeder RC (1994) Subsoil compaction by vehicles with high axle load-extent, persistence and crop response. Soil Tillage Res 29(2–3):277–304

    Article  Google Scholar 

  • Hameberger J (2003) Wie Mechanisierung und Umweltvorsorge die Forstwirtschaft veränderten. LWF Aktuell 39:33–36

    Google Scholar 

  • Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82(2):121–145

    Article  Google Scholar 

  • Hildebrand EE (1983) The influence of soil compaction on soil functions on forest sites. Forstwiss Cent bl 102(2):111–125

    Article  Google Scholar 

  • Howard RF, Singer MJ, Frantz GA (1981) Effects of soil properties, water-content, and compactive effort on the compaction of selected California forest and range soils. Soil Sci Soc Am J 45(2):231–236

    Article  Google Scholar 

  • Ingold K, Zimmermann W (2011) How and why forest managers adapt to socio-economic changes: a case study analysis in Swiss forest enterprises. For Policy Econ 13(2):97–103. doi:10.1016/j.forpol.2010.06.003

    Article  Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KWT, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38(5):898–911. doi:10.1016/j.soilbio.2005.08.006

    Article  CAS  Google Scholar 

  • Kooistra MJ, Bouma J, Boersma OH, Jager A (1984) Physical and morphological characterization of undisturbed and disturbed ploughpans in a sandy loam soil. Soil Tillage Res 4(5):405–417

    Article  Google Scholar 

  • Köstler JN, Brückner E, Bibelriether H (1968) Die Wurzeln der Waldbäume. Verlag Paul Parey, Hamburg u, Berlin

    Google Scholar 

  • Kreutzer K (1961) Wurzelbildung junger Waldbäume auf Pseudogley. Forstwiss Cent bl 80(11–12):356–392

    Article  Google Scholar 

  • Labelle ER, Jaeger D (2011) Soil compaction caused by cut-to-length forest operations and possible short-term natural rehabilitation of soil density. Soil Sci Soc Am J 75(6):2314–2329. doi:10.2136/sssaj.2011.0109

    Article  CAS  Google Scholar 

  • Lowry GL, Brokaw FC, Breeding CHJ (1962) Alder for reforesting coal spoils in Ohio. J For 60:196–199

    Google Scholar 

  • Materechera SA, Kirby JM, Alston AM, Dexter AR (1994) Modification of soil aggregation by watering regime and roots growing through beds of large aggregates. Plant Soil 160(1):57–66. doi:10.1007/bf00150346

    Article  Google Scholar 

  • McVean DN (1956) Ecology of Alnus glutinosa (L.) Gaertn. IV. Root system. J Ecol 44(1):218–223

    Google Scholar 

  • Ouellet G, Lapen DR, Topp E, Sawada M, Edwards M (2008) A heuristic model to predict earthworm biomass in agroecosystems based on selected management and soil properties. Appl Soil Ecol 39(1):35–45. doi:10.1016/j.apsoil.2007.11.003

    Article  Google Scholar 

  • Page-Dumroese DS, Jurgensen MF, Tiarks AE, Ponder F, Sanchez FG, Fleming RL, Kranabetter JM, Powers RF, Stone DM, Elioff JD, Scott DA (2006) Soil physical property changes at the North American long-term soil productivity study sites: 1 and 5 years after compaction. Can J For Res 36(3):551–564. doi:10.1139/s05-273

    Article  Google Scholar 

  • Passioura JB (2002) Soil conditions and plant growth. Plant Cell Environ 25(2):311–318

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schäffer B, Attinger W, Schulin R (2007a) Compaction of restored soil by heavy agricultural machinery-soil physical and mechanical aspects. Soil Tillage Res 93(1):28–43

    Article  Google Scholar 

  • Schäffer B, Eggenschwiler L, Suter B, Vogt L, Buchter B, Pfister H, Schulin R (2007b) Einfluss der Zwischenlagerung auf die anfängliche Entwicklung rekultivierter Oberböden. J Plant Nutr Soil Sci 170:669–681

    Article  CAS  Google Scholar 

  • Schäffer J, Buberl H, von Wilpert K (2012) Deformation damages in forest topsoils—an assessment based on level-I soil monitoring data from Baden-Württemberg (SW Germany). J Plant Nutr Soil Sci 175(1):24–33

    Article  CAS  Google Scholar 

  • Schmidt-Vogt H (1971) Wachstum und Wurzelentwicklung von Schwarzerlen verschiedener Herkunft. Allg Forst Jagdztg 142:149–156

    Google Scholar 

  • Schoenholtz SH, Van Miegroet H, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For Ecol Manag 138(1–3):335–356

    Article  Google Scholar 

  • Schröder P (1989) Aeration of the root-system in Alnus glutinosa L. Gaertn. Ann Sci For 46:S310–S314

    Article  Google Scholar 

  • Sheriff DW, Nambiar EKS (1995) Effect of subsoil compaction and three densities of simulated root channels in the subsoil on growth, carbon gain and water uptake of Pinus radiata. Aust J Plant Physiol 22(6):1001–1013

    Article  Google Scholar 

  • Sinnett D, Poole J, Hutchings TR (2008) A comparison of cultivation techniques for successful tree establishment on compacted soil. Forestry 81(5):663–679. doi:10.1093/forestry/cpn039

    Article  Google Scholar 

  • Soane BD, Van Ouwerkerk C (1994) Soil compaction problems in world agriculture. Soil compaction in crop production. Elsevier, Amsterdam

    Google Scholar 

  • Tang AM, Cui YJ, Eslami J, Defossez P (2009) Analysing the form of the confined uniaxial compression curve of various soils. Geoderma 148:282–290

    Article  Google Scholar 

  • Thorud DB, Frissel SS (1976) Time changes in soil density following compaction under an oak forest. Minnesota Forestry Research Notes, University of Minnesota, St Paul 257

  • Tracy SR, Black CR, Roberts JA, Mooney SJ (2011) Soil compaction: a review of past and present techniques for investigating effects on root growth. J Sci Food Agric 91(9):1528–1537. doi:10.1002/jsfa.4424

    Article  PubMed  CAS  Google Scholar 

  • Tri BH (1968) Dynamique de la granulation du sols sous prairie. Annuales Agronomique 19:415–439

    Google Scholar 

  • USDA (1997) Keys to soil taxonomy by the soil survey staff. Soil Cons Serv, US Dept Agr, 7th ed. Pocahontas Press, Blackburg

  • Von Wilpert K, Schäffer J (2006) Ecological effects of soil compaction and initial recovery dynamics: a preliminary study. Eur J For Res 125(2):129–138. doi:10.1007/s10342-005-0108-0

    Article  Google Scholar 

  • Whalley WR, Dumitru E, Dexter AR (1995) Biological effects of soil compaction. Soil Tillage Res 35(1–2):53–68

    Article  Google Scholar 

  • WRB IWG (2006) World reference base for soil resources—a framework for international classification, correlation and communication. World Soil Resources Reports 103 International Union of Soil Sciences, ISRIC—World Soil Information and Food and Agriculture Organization of the United Nations, Rome

  • Zimmermann S, Luster J, Blaser P, Walthert L, Lüscher P (2006) Waldböden der Schweiz 3—region Mittelland und Voralpen, vol 3. Waldböden der Schweiz. Hep Verlag, Bern

Download references

Acknowledgments

We are very grateful to Roger Köchli and Marco Walser for their great support during the field works and in the laboratory. The project was funded by the “Fonds zur Förderung der Wald und Holzforschung” of the Federal Office for the Environment (BAFU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Meyer.

Additional information

Communicated by A. Merino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C., Lüscher, P. & Schulin, R. Enhancing the regeneration of compacted forest soils by planting black alder in skid lane tracks. Eur J Forest Res 133, 453–465 (2014). https://doi.org/10.1007/s10342-013-0776-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0776-0

Keywords

Navigation