Skip to main content

Advertisement

Log in

Patterns of genetic diversity resulting from bottlenecks in European black pine, with implications on local genetic conservation and management practices in Bulgaria

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In the present study, we investigated the genetic structure and diversity of P. nigra populations in Bulgaria, using simple sequence nuclear repeats. Among-population structure was studied with distance and Bayesian frequency methods, assuming geometric distance and a “non-admixture” model. The “NJ” and “non-admixture” clusters confirm the “mountain effect” hypothesis of the black pine genetic structure in the study region. The analyses showed moderate among-population divergence (13.31 %; AMOVA) and evidence of genetic bottlenecks. The coalescent analyses suggest that P. nigra has survived for a long period (thousands of generations) under strong selection pressure and that its populations continued to be exposed to stochastic factors like climate fluctuation, forest fire and disease. The combination of recent and historic changes is responsible for the present population size and genetic diversity. Our results suggest that conservation and management practices should strive to maintain this genetic differentiation, specifically by emphasising reforestation efforts with stocks from local provenances to avoid non-local introductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexandrov A, Rafailov G, Nedelin G, Canov K, Bogdanov B, Spasov C (1988) Coniferous forest in Bulgaria. Zemizdat, Sofia [in Bulgarian]

    Google Scholar 

  • Auckland LD, Bui T, Zhou Y, Shepherd M, Williams C (2002) Conifer microsatellite handbook. Corporate Press, Raleigh

    Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsattelites. Genetics 153:2013–2029

    PubMed Central  CAS  PubMed  Google Scholar 

  • Belkhir K (2002) GENETIX V. 4.01 A software for population genetics data analysis. Laboratoire Génome et populations, Université de Montpellier II, France

  • Bondev I (1973) Atlas of Bulgaria. Bulgaria Academy of Sciences, Sofia [in Bulgarian]

    Google Scholar 

  • Cengel B, Tayanc Y, Kandemir G, Velioglu E, Alan M, Kaya Z (2012) Magnitude and efficiency of genetic diversity captured from seed stands of Pinus nigra (Arnold) subsp. pallasiana in established seed orchards and plantations. New For 43(3):303–317

    Article  Google Scholar 

  • Derory J, Mariette S, Gonzalez-Martınez SC, Chagne D, Madura D, Gerber S, Brach J, Persyn F, Ribeiro MM, Plomion C (2002) What can nuclear microsatellites tell us about maritime pine genetic resources conservation and provenance certification strategies? Ann For Sci 59:699–708

    Article  Google Scholar 

  • Dobrinov I (1983) Genetic and selection of forest trees. Zemizdat, Sofia [in Bulgarian]

    Google Scholar 

  • Dobrinov I, Doykov G, Gagov V (1982) Forest genetic pool in Bulgaria. Zemizdat, Sofia [in Bulgarian]

    Google Scholar 

  • Evanno G, Madec L, Arnaud JF (2005) Multiple paternity and post-copulatory sexual selection in a hermaphrodite what influences sperm precedence in the garden snail Helix aspersa? Mol Ecol 14:805–812

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Excoffier L, Schneider S, Roessli D (2002) ARLEQUIN V.2.001 A software for population genetics data analysis. Department of Anthropology and Ecology, University of Geneva, Geneva

    Google Scholar 

  • Falush DM, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fave MJ, Turgeon J (2008) Patterns of genetic diversity in Great Lakes bloaters (Coregonus hoyi) with a view to future reintroduction in Lake Ontario. Cons Gen. doi:10.1007/s10592-007-9339-6

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  • Fukarek P (1958a) Prilog poznavanju cgnog bora. Radovi, Poljoprivredno-sumarskog fakulteta Univerziteta u Sarajevu 3:3–146 [in Serbian]

    Google Scholar 

  • Fukarek P (1958b) Die Standortsrassen der Schwarzfohre (Pinus nigra Arn.). Centralbl F d ges Forstwesen 75:203–207 [in German]

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite DNA. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Goncharenko GG, Silin AE (1997) Populyatsionnaya i evolyutsionnaya genetika sosen Vostochnoi Evropy i Sibiri. [Population and Evolutionary Genetics of Pine in Eastern Europe and Siberia.] Tekhnalogiya, Minsk, Belarus [in Russian]

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Hedrick P (1996) Bottleneck (s) or metapopulation in cheetahs. Cons Biol 10:897–899

    Article  Google Scholar 

  • Hedrick PW (2000) Genetics of populations, 2nd edn. Jones and Bartlett, Boston

    Google Scholar 

  • Holmes S (2003) Bootstrapping phylogenetic trees theory and methods. Stat Sci 18:241–255

    Article  Google Scholar 

  • Ihaka R, Gentleman R (1996) R A language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Jones ME, Paetkau D, Geffen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST (2009) How well do evolutionary trees describe genetic relationships between populations? Heredity 102:506–513

    Article  CAS  PubMed  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kostov K (1974) A very insect-resistant form of Pinus nigra (Arn.) in Bulgaria. For Manag (Bulgaria) 3:6–16 [in Bulgarian]

    Google Scholar 

  • Kostov G, Paligorov I, Petrov S, Bogdanov Z (2005) Illegal logging in Bulgaria. In: Hirschberger P (ed) WWF European Forest programme and the Danube Carpathian Programme (DCP)

  • Krutovskii KV, Erofeeva SY, Aagaard JE, Strauss SH (1999) Simulation of effects of dominance on estimates of population genetic diversity and differentiation. J Hered 60:499–502

    Google Scholar 

  • Leberg PL, Firmin BD (2008) Role of inbreeding depression and purging in captive breeding and restoration programmes. Mol Ecol 17:334–343

    Article  PubMed  Google Scholar 

  • Lehman N (1998) Conservation biology genes are not enough. Curr Biol 8:R722–R724

    Article  CAS  PubMed  Google Scholar 

  • Lian C, Miwa M, Hogetsu T (2000) Isolation and characterization of microsatellite loci from the Japanese red pine, Pinus densiflora. Mol Ecol 9:1171–1193

    Article  Google Scholar 

  • Lippe C, Dumont P, Bernatchez L (2006) High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces) the positive sides of a long generation time. Mol Ecol 15:1769–1780

    Article  CAS  PubMed  Google Scholar 

  • Mariette S, Chagnea D, Lezier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479

    Article  CAS  PubMed  Google Scholar 

  • Mihailov V (1993) Biological and morphological study of European Black pine (Pinus nigra Arn.) seeds from different provenances and selection structures in Pirin and Slavianka mountains in Bulgaria. Ph.D. dissertation, Forest Research Institute, Bulgarian Academy of Sciences, Sofia, Bulgaria [in Bulgarian]

  • Mihailov V (1998) Variability of European Black pine (Pinus nigra Arn.) according to the size, weight and shape of cone apophyses in Pirin and Slavianka mountains. For Sci (Bulgaria) 1–2:24–37 [in Bulgarian]

    Google Scholar 

  • Mirov NT (1967) The genus Pinus. Ronald Press, New York

    Google Scholar 

  • Naydenov KD, Velkov D, Alexandrov A, Genov K, Asparuchova E, Iliev I (1993/1996) Research on chemophenotypic variation of representatives in the genus PINUS with regards to their preservation—Rapport N CC-318/93 NFNI-MONT, Bulgaria [in Bulgarian]

  • Naydenov KD, Tremblay MF, Ganchev P (2003) Karyotype diversity in of European Black pine (Pinus nigra Arn.) from Bulgarian provenances. Phyton 43(1):9–28

    Google Scholar 

  • Naydenov KD, Tremblay F, Fenton N, Alexandrov A (2006) Structure of Pinus nigra Arn. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis Provenance tests. Biochem Syst Ecol 34:562–574

    Article  CAS  Google Scholar 

  • Naydenov KD, Naydenov MK, Tremblay F, Alexandrov A, Aubin-Fournier LD (2011) Patterns of genetic diversity that result from bottlenecks in Scots Pine and the implications for local genetic conservation and management practices in Bulgaria. New For 42:179–193

    Article  Google Scholar 

  • Naydenov KD, Alexandrov A, Matevski V, Vasilevski K, Naydenov MK, Gyuleva V, Carcaillet C, Wahid N, Kamary S (2014) Range-wide genetic structure of maritime pine predates the last glacial maximum: evidence from nuclear DNA. Hereditas 151:1–13

    Article  PubMed  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North-Holland, Amsterdam

    Google Scholar 

  • Nikolic D, Tucic N (1983) Isoenzyme variation within and among populations of European Black pine (Pinus nigra Arn.). Silvae Genet 32:80–89

    CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX V. 6 genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment present problems, paradoxes and future challenges. Biodivers Conserv 16:4147–4163

    Article  Google Scholar 

  • Pimm SL, Gittleman JL, McCracken GF, Gilpin M (1989) Plausible alternatives to bottlenecks to explain reduced genetic diversity. Trends Ecol Evol 4:176–178

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Wen W (2003) Documentation for structure software version 2 [online]. http://pritch.bsd.uchicago.edu/software/readme_2_1/readme.html. Accessed 17 June 2005

  • Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Raymond M, Rousset F (1995b) GENEPOP: a population genetics software for exact test and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Ribeiro MM, Plomion C, Petit RJ, Vendramin GG, Szmidt AE (2001) Variation in chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theor Appl Genet 102:97–103

    Article  CAS  Google Scholar 

  • Rogers JS (1972) Measures of genetic similarity and genetic distance. Univ Tex Publ 7213:145–153

    Google Scholar 

  • Rubio-Moraga A, Candel-Perez D, Lucas-Borja ME, Tiscar PA, Viñegla B, Linares JC, Gómez-Gómez L, Ahrazem O (2012) Genetic diversity of Pinus nigra Arn. Populations in Southern Spain and Northern Morocco revealed by inter-simple sequence repeat profiles. Int J Mol Sci 13:5645–5658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salim K, Naydenov KD, Benyounes H, Tremblay F, Latifa EH, Wahid N, Valeria O (2010) Genetic signals of ancient decline in Aleppo pine populations at the species’ southwestern margins in the Mediterranean Basin. Hereditas 147:165–175

    Article  PubMed  Google Scholar 

  • Scaltsoyiannes A, Rohr R, Panetsos K, Tsaktsira M (1994a) Allozyme frequency distributions in five European populations of Black pine (Pinus nigra Arnold). I. Estimation of genetic variation within and among populations. Silvae Genet 43:20–25

    Google Scholar 

  • Scaltsoyiannes A, Rohr R, Panetsos K, Tsaktsira M (1994b) Allozyme frequency distributions in five European populations of Black pine (Pinus nigra Arnold). II. Contribution of isozyme analysis to the taxonomic status of the species. Silvae Genet 43:25–30

    Google Scholar 

  • Shannon CE (1948a) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Shannon CE (1948b) A mathematical theory of communication. Bell Syst Tech J 27:623–656

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and geographic structure of natural populations. Science (Washington, D.C.) 236:787–792

    Article  CAS  Google Scholar 

  • Slatkin M, Barton N (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368

    Article  Google Scholar 

  • Stefanov B (1941/1942) Geographical distribution of coniferous species and their form in nature. Godichnik na Sofiiskia Darjaven Universitet, Sofia, (Bulgaria), XIX and XX, 1–88 [in Bulgarian]

  • Stefanov B (1943) The phyto-geographical elements of Bulgaria. Thesis of Bulgarian Academy of Sciences, Faculty of Nature and Mathematics, Sofia, (Bulgaria), Vol. XXXIX, 19:1–121 [in Bulgarian]

  • Tallmon DA, Beaumont MA, Luikart GH (2004) Effective population size estimation using approximate Bayesian computation. Genetics 167:977–988

    Article  PubMed Central  PubMed  Google Scholar 

  • Tekezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Program note: MICRO—CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Velkov D, Mihailov V, Dobrev R (1983) Taxonomical and biological study of seed production practices for Pinus nigra (Arn.). In Nauchno-technicheska konferencia s mejdunarodno uchastie na tema “Nasoki I problemi na izgrajdaneto na gorskata semeproizvoditelna baza”, Borovec, Bulgaria. Vol 1, pp 12–13 [in Bulgarian]

  • Vidakovic M (1974) Genetics of European Black pine (Pinus nigra Arn.). Ann For (Zagreb) 6:57–86

    Google Scholar 

  • Vidakovic M (1991) Conifers—morphology and variation. Graficki Zavod Hrvatske, Croitia

    Google Scholar 

  • Watts BD, Byrd MA, Watts MU (2004) Status and distribution of breeding Ospreys in the Chesapeake Bay 1995–1996. J Raptor Res 38:47–54

    Google Scholar 

  • Whitehouse AM, Harley EH (2001) Post-bottleneck genetic diversity of elephant populations in South Africa, revealed using microsatellite analysis. Mol Ecol 10:2139–2149

    Article  CAS  PubMed  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Williams CG, Elsik CG, Barnes RD (2000) Microsatellite analysis of Pinus taeda L. in Zimbabwe. Heredity 84:261–268

    Article  CAS  PubMed  Google Scholar 

  • Wrigth S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Zhelev P (1992) Ecolo-biological and selection—genetic Scots Pine investigations from the Rhodope Mountains. Ph.D. Thesis of forest genetic, selection and tree breeding. University of Forestry, Sofia, Bulgaria [in Bulgarian]

  • Zhelev P, Longauer R, Ladislav P, Gomory D (1994) Genetic variation of the indigenous Scots Pine (Pinus sylvestris L.) populations from the Rhodope Mountains. For Sci (Bulgaria) 3:68–76 [in Bulgarian]

    Google Scholar 

Download references

Acknowledgments

We thank Irena M. Naydenova and T&T for their technical assistance. We are grateful to the staff of the Bulgarian forest service for their assistance with the plant material; the Ministry of Education and Science of Bulgaria (EU) for their financial support (CC-318/1993–1996); and the Fond KAZAROVI-Geneva (Switzerland) for a student grant to K. D. Naydenov during an internship at the University of Geneva, Switzerland (Dept. of Botany). We also wish to thank Dan MacKay (CFLS-St-Jean, Qc., Canada) and Translation-Group (UK) for his careful revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krassimir D. Naydenov.

Additional information

Communicated by Jarmo Holopainen.

This article is dedicated to the memory of Prof. Dr. Kosta Kostov from Forest Research Institute, Bulgarian Academy of Science (1924–2009).

Appendices

Appendix 1

See Table 3.

Table 3 List of nSSR primer pairs used for European black pine

Appendix 2

The neighbour-joining (NJ) dendrogram of Rogers’s (1972) genetic distance assumes the “non-mutation” model (i.e. geometric distance). The ring on the nodes indicates bootstrap values of ≥50 % at 1000 replications (R 2av  = 0.94 for F st; Kalinowski 2009).

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naydenov, K.D., Mladenov, I., Alexandrov, A. et al. Patterns of genetic diversity resulting from bottlenecks in European black pine, with implications on local genetic conservation and management practices in Bulgaria. Eur J Forest Res 134, 669–681 (2015). https://doi.org/10.1007/s10342-015-0881-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0881-3

Keywords

Navigation